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Abstract
Visual localization and mapping refer to locating an agent in a scene and creating a
representation of its surroundings using a camera as the primary source of perception.
Localization and mapping are the fundamental prerequisites for autonomous robots,
self-driving cars, and augmented reality applications. Despite decades of research
and development in this domain, even state-of-the-art vision-based approaches strug-
gle to perform in challenging outdoor conditions (e.g., lighting, structural, weather,
and seasonal changes). Hence, this remains an active area of research and is of
paramount importance for achieving autonomy over long periods. In addition to
changing conditions, run-time and hardware constraints are crucial for practical ap-
plications. State-of-the-art methods often rely on 3D scene reconstruction for local-
ization. However, 3D scene reconstruction is resource-intensive in terms of hardware
requirements and computation time. Therefore, running it on a robot equipped with
low-cost hardware is infeasible. The work presented in this thesis addresses these
challenges, thus providing a robust, low-cost solution for mapping and localization
in outdoor environments.
This thesis approaches the problem using a bio-inspired model based on unsuper-
vised Slow Feature Analysis (SFA). The model reproduces the firing characteristics
of Place and Head-Directions Cells found in the rodent’s hippocampus. Recently, this
model has been successfully used for outdoor localization. However, it is short-term
stable w.r.t environmental changes, which limits its use over a long time. Moreover,
it does not scale to large-scale environments, which limits its applicability to small
settings. This work overcomes the first limitation by restructuring the long-term data
to change the input data’s perceived statistics. The restructuring allows the model
to learn invariance to long-term scene changes. For large-scale localization, the pro-
posed approach uses landmarks in a scene and learns to localize relative to them.
The work also compares and analyzes the SFA-based approach with state-of-the-art
methods w.r.t to localization accuracy, run-time, and hardware requirements. Suc-
cessful localization and mapping enable many downstream tasks, like goal-directed
navigation. The spatial smoothness of learned representation using SFA allows the
approach to perform navigation using straightforward gradient descent without ex-
plicit path planning. All the experiments presented in this work were performed us-
ing real-world robot recordings, which enforces the feasibility of using the proposed
method for practical applications.
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Zusammenfassung

Der Prozess, die eigene Position im Raum aus Bildern zu bestimmen und eine Repräs-
entation der Umgebung aufzubauen wird als „Visuelle Lokalisierung und Kartierung“
bezeichnet. Dieser Prozess ist eine fundamentale Voraussetzung für die Funktion
von autonomen Robotern, selbstfahrenden Fahrzeugen und Augmented Reality An-
wendungen. Auch nach mehreren Jahrzenten Forschung und Entwicklung in diesem
Gebiet stellt Visuelle Lokalisierung noch immer eine Herausforderung für den gegen-
wärtigen Stand der Technik dar, insbesondere unter Outdoor-Bedingungen mit wech-
selnder Beleuchtung, dynamischen Objekten, Wetterveränderungen und fortschreit-
enden Jahreszeiten. Diese Probleme gelten verschärft für Systeme mit Langzeit-
Autonomie. Zu den genannten Herausforderungen durch die Umgebung kommen für
die praktische Anwendbarkeit noch Weitere, wie Begrenzungen der Laufzeit und der
verfügbaren Hardware. Gegenwärtige Methoden basieren oft auf 3D-Rekonstruktion-
en der Umgebung, deren Erstellung allerdings selbst auf moderner Hardware noch
hohe Laufzeiten und Energieverbräuche bedingt. Ein autonomer Roboter mit en-
ergieeffizienter und kostengünstiger Hardware ist mit diesen Ansätzen auf absehbare
Zeit unrealistisch. Die Beiträge in dieser Arbeit widmen sich den genannten Heraus-
forderungen und erlauben damit die Realisierung eines robusten und kostengünstigen
Systems zur Visuellen Lokalisierung und Kartierung in Outdoor-Umgebungen.
Diese Arbeit basiert auf Slow Feature Analysis (SFA), einem aus der Biologie inspiri-
erten Ansatz des unüberwachten Lernens, in dem die zeitliche Statistik der wahrgen-
ommenen Umgebung als Lernsignal genutzt wird. Dieses Modell wurde in der Ver-
gangenheit genutzt, um das Verhalten von Ortszellen und Kopfrichtungszellen im
Hippocampus von Nagetieren zu reproduzieren. Spätere Arbeiten belegen die grund-
sätzliche Nutzbarkeit für Lokalisierung auf Robotern in Outdoor-Umgebungen über
Zeiträume von Minuten bis Stunden . Die Nutzung dieses Ansatzes für langzeitsta-
bile Lokalisierung war bisher nicht gelungen. Darüber hinaus skalierte der bisherige
Ansatz nicht auf größere Umgebungen. Diese Arbeit überwindet die erste Begren-
zung durch einen Ansatz zur Restrukturierung der Zeitstruktur der visuellen Train-
ingsdaten und ermöglicht damit invariante Lokalisierung trotz Langzeit-Umgebungs-
änderungen. Die bisherige Größenbegrenzung der Umgebung wird hier durch die
Einführung der Nutzung von Landmarken aufgehoben, anhand derer ein Roboter sich
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lokalisieren kann. Diese Arbeit analysiert den neu entwickelten Ansatz und vergle-
icht Lokalisierungsgenauigkeit (accuracy), Laufzeit und Hardwareanforderungen mit
dem gegenwärtigen Stand der Technik. Erfolgreiche Lokalisierung bildet die Basis
für nachgeordnete Funktionen wie zielgerichtete Navigation. Die mit SFA gelernten
räumlichen Repräsentationen zeichnen sich durch ihre Glattheit aus, die Navigation
ohne explizite Pfadplanung durch einfachen Gradientenabstieg auf der Repräsenta-
tion erlaubt. Die Praxistauglichkeit aller Ansätze in dieser Arbeit ist durch die An-
wendung auf einem realen Roboter und meist unter Outdoor-Bedingungen belegt.
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Chapter 1

Introduction

Autonomous navigation is the ability of an agent (e.g., a robot or a car) to plan its
path towards a target location in an environment without human intervention. Con-
sider a mobile robot (fig. 1.1) that wants to navigate to a goal location, for instance,
a charging station. There are two fundamental requirements to perform this task
successfully:

1. Localization (Where am I?)

2. Mapping (What does the world look like?)

FIGURE 1.1: Autonomous Navigation: For successfully planning a path towards a goal
location, an autonomous robot must be able to locate itself (localization) within a map (an

internal representation of the robot’s surroundings) of the environment.

Localization estimates an agent’s current pose (x,y,φ ) in an environment, while map-
ping creates a consistent representation of an agent’s surroundings. Both technolo-
gies are prerequisites to implementing intelligent behavior. There is a plethora of ap-
plications that require localizing an agent in an environment, for instance: industrial
robots, domestic robots (lawnmowers, vacuum cleaners), surveillance robots, self-
driving cars, and more-recent delivery robots. These robots offer massive assistance
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to humans in performing mundane or repetitive tasks. Various sensors and tech-
niques allow localizing an agent in an environment. The following section presents
an overview of such technologies.

1.1 Sensors for Localization

Wheel Odometry: The most straightforward and widely utilized approach for the
pose estimation of an agent is wheel odometry. Odometry integrates an agent’s mo-
tion based on wheel encoders. However, the integration accumulates errors and pose
estimates drift strongly over time. In outdoor scenarios, wheel odometry can be
strongly impacted by wheel slip or the accumulation of material on the wheels. Nev-
ertheless, odometry is very accurate in the short-term (seconds to minutes) and can
be integrated with other localization methods.

Inertial Measurement Unit (IMU): IMU uses an accelerometer and gyroscope to
measure acceleration and angular velocity. Together, these sensors allow 6D pose
(3D position and 3D orientation) estimation of an agent relative to the start location.
Like wheel odometry, its estimate also drifts over time due to the accumulation of
errors. Thus, it is unsuitable for long-term positioning estimation. Instead, it is typ-
ically utilized for short-term motion and combined with other localization methods
for long-term operation.

Global Positioning System (GPS): GPS is an established localization system for
outdoor use with line-of-sight between the receiver and at least four satellites. A
GPS can localize anywhere with good satellite reception and allows long-term stable
localization without manual intervention. Most available GPS systems use dedicated
hardware and thus require little power and low computational effort. Accuracy with
standard low-cost receivers is 1-2 meters but drastically reduces when occlusions
between receiver and satellites occur (e.g., buildings, trees). It is not usable in some
conditions, like indoors or tunnels, and signal reflections can also cause significant
errors, especially on metal objects. Despite its limitations, it can be a cost-effective
secondary localization source for mobile agents operating in outdoor environments.

LiDAR (Light Detection and Ranging): LiDAR uses an array of light pulses to
measure the distance to nearby objects and yields a 3D point cloud of an environ-
ment. Distance measurements with laser sensors are highly accurate (often in the mm
range) and can lead to precise localization. Moreover, it is less affected by appear-
ance changes in the environment than vision-based approaches (except for seasonal
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vegetation changes). However, LiDARs are unrealistically large and highly costly,
which makes them less attractive to be deployed on a domestic robot (e.g., a lawn-
mower). Like vision-based approaches, these sensors can suffer from certain lighting
conditions (e.g., low sun) and weather conditions (e.g., fog or rain).

Optical Cameras: Cameras can be employed to overcome most of the drawbacks
of other sensors. For instance, camera-based methods are not affected by wheel
slippage. In contrast to GPS, cameras can work in GPS-denied environments, like
indoors. Moreover, compared to expensive LiDARs and differential GPS systems,
vision-based approaches can work with a consumer-grade camera. These attributes
make a camera-based solution appealing for localizing an agent in an environment.
Moreover, cameras are versatile sensors that can also be used for other tasks besides
localization, for instance, reading text from signs and interpreting colors.

1.2 Application Area

There are numerous applications of localization and mapping technology, e.g., from
the phone in hand to the robots operating in space. However, the particular emphasis
in this work will be on application scenarios for service robots (e.g., lawnmowers)
in a limited environment like an apartment or a garden. The current capabilities of
such robots are limited, i.e., they often rely on pre-installed wire guidance technol-
ogy as a navigation aid. The movement patterns are also constrained to random line
segments (fig. 1.2a) combined with some collision avoidance mechanism. For an ef-
ficient navigation strategy (fig. 1.2b), such robots should be able to create an internal
representation of their surroundings (mapping) and locate themselves (localization)
within the constructed map of the environment.

1.3 Visual Localization and Mapping

Visual Localization and Mapping enable a robot to build an environment map and es-
timate its location using a camera as the only source of perception. For localization
and mapping, one can use multiple cameras (e.g., a stereo camera). However, this
thesis addresses the problem using only a single camera (i.e., monocular visual lo-
calization and mapping). Despite its apparent advantages, the camera-based solution
also has potential downsides, for example:

• Visual localization in constrained indoor environments can be considered a
solved problem. However, in outdoor environments, it remains a challenging
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FIGURE 1.2: Navigation Strategies for Domestic Robots: (a) Domestic robots with
a straightforward approach navigate randomly in an environment, i.e., typically going
straight until they hit something or detect a pre-installed border wire. Afterwards, they
turn in a random direction and start moving straight again. However, this is not optimal
behavior since a robot could traverse unnecessarily in an already visited location of an en-
vironment. (b) On the other hand, for a more systematic navigation behavior, a robot must
locate itself in an environment and maintain a map of its surroundings. In this way, these
robots can plan optimal paths to efficiently accomplish a task (i.e., cleaning or mowing).

problem and, thus, an active research area (Toft et al., 2022). Many factors
make visual localization difficult in outdoor environments, e.g., uneven ter-
rains, lighting conditions, shadows, dynamic changes, weather, seasonal shifts,
or structural changes. A localization method should ideally cope with such en-
vironmental changes, allowing long-term robust operation.

• Another limitation of a camera-based approach is image analysis, which is typ-
ically a computationally expensive task. Unlike a LiDAR sensor that provides
a precise distance and location of a nearby object, a camera gives a raw im-
age of a scene. Therefore, appropriate image-based algorithms are necessary
to process the images that often require more computational power. Hence,
an ideal localization method should be realizable on low-cost embedded hard-
ware, especially for consumer household robots (e.g., lawnmowers and vac-
uum cleaners).

As discussed, each sensor has its limitation. A viable approach to overcome this
issue is to combine multiple sensors (e.g., cameras, GPS, IMU, and odometry) and
take their advantages while limiting the drawbacks of a particular sensor. However,
sensor fusion is beyond the scope of this thesis, and the focus here is only on tackling
the challenges posed by cameras. In addition to other aspects of visual localization
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methods, the following are considered especially relevant here:

Temporal Generalization: The primary scientific target of this work is to ad-
vance vision-based autonomous localization towards substantial temporal environ-
ment variation (e.g., seasonal changes) and develop efficient learning mechanisms
that can deal with this challenging requirement. Therefore, the aim is to concentrate
only on algorithms that do not require prior knowledge of the environment.

Computational Requirements: Another critical aspect of a localization method is
its feasibility of running on low-cost hardware, especially for real-world commercial
applications. Therefore the aim is to develop a computationally efficient solution that
can be implemented on embedded hardware without needing specialized hardware
(e.g., a GPU).

Localization Accuracy: The target is to achieve better or similar absolute local-
ization accuracy (in meters) compared to the state-of-the-art visual localization ap-
proaches.

Spatial Generalization: It is the ability of a localization approach that allows a
robot to locate itself in previously unvisited areas in an environment. For example,
in the context of learning-based methods, this means how well the learned spatial
representation generalizes to new positions (unseen during training) in the same en-
vironment. It is an essential aspect of a localization method that shows its strength.

1.4 Thesis Outline

This thesis employs a biologically-motivated model to perform visual localization
and mapping, as many animals show excellent localization and navigation abilities
in natural environments. In 1971 O’Keefe and Dostrovsky found that the firing ac-
tivity of Place Cells is highly related to the rat’s position in an environment (O’Keefe
et al., 1971). In (Taube et al., 1990), Head-Direction Cells have also been recognized
later to play an essential role in rodent localization ability. Both Cell types strongly
depend on visual input (Jeffery et al., 1999). Earlier learning approaches (Franzius
et al., 2007) show that a hierarchical model can reproduce the activity of Place or
Head-Direction Cells if trained from the visual cues of a virtual rat in an unsuper-
vised way. The model uses the concept of Slow Features Analysis (SFA) (Wiskott
et al., 2002), and the intuition behind it is that behaviorally meaningful information
(e.g., position or orientation of an animal in space) changes on a slower timescale
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compared to the primary sensory input (e.g., pixel values in a video). The learned
latent representations are well-suited for localization and navigation. The later chap-
ters of this thesis will present more details on the approach.
Visual localization and mapping are well-researched areas. More than two decades
of research exist in this domain, ranging from classical vision-based to more recent
learning-based methods. Chapter 2 will present an overview of such approaches that
aim to perform localization and mapping using a camera as the only exteroceptive
sensor.
Chapter 3 is dedicated to introducing the unsupervised Slow Feature Analysis (SFA)
algorithm, the primary method for learning localization-relevant latent representation
in this work. The chapter first presents the high-level intuition of the approach before
diving into the mathematical formulation of the problem and its implementation de-
tails. Due to the high input dimensionality of visual images, SFA can not be applied
directly to the visual data. Therefore, the chapter also introduces a feed-forward
converging hierarchical SFA network to process such data. Later, some example ap-
plications of the approach are presented, along with the idea of how SFA can help
extract a latent representation suitable for localization and navigation.
Chapter 4 explains the procedure of generating and capturing the visual data. The ex-
periments were performed in a perfectly-controlled simulated environment, an indoor
area, and two garden-like outdoor environments. Further, it presents the procedure
to acquire ground-truth metric coordinates (x,y) for real-world data, which serves as
a reference to evaluate the accuracy of the localization methods.
Localization and mapping methods typically follow a modular pipeline to construct
a scene representation and estimate an agent’s location from input data. Chapter 5
introduces the proposed visual mapping and localization pipeline in this work. The
mapping pipeline uses the input image stream to learn a scene representation with
SFA. The chapter further describes different pre-processing techniques and details
regarding the SFA network architecture. The last section presents the localization
pipeline that computes the SFA output of an input image using the trained model.
For evaluation purposes, the procedure to map the learned SFA representation to the
corresponding metric coordinates (x,y) is also described.
In outdoor scenarios, changing conditions (e.g., seasonal, weather, and lighting ef-
fects) have a substantial impact on the appearance of a scene, which often prevents
successful visual localization. Chapter 6 introduces the proposed approach solely
based on SFA to tackle this challenging problem. The method uses SFA’s invariance
learning capabilities by restructuring the temporal order of the training data. This
restructuring scheme allows SFA to learn invariance to the undesired variables (here:
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conditions) and encode localization-relevant representation for long-term robust op-
eration.
Chapter 7 introduces an alternative method to perform localization that identifies
landmarks in a scene and then learns localization relative to them using SFA. The
approach performs well in a large-scale outdoor environment. However, this relies
on hand-labeled data to train a CNN to recognize landmarks, which is a tedious task.
Thus, the chapter also presents a novel approach that allows a robot to learn land-
marks for localization with a human cooperatively. This approach uses pre-trained
detectors of everyday objects to learn new landmarks in a scene, requiring minimal
human supervision. Hence, the method bootstraps the landmark learning process and
removes the need to manually label large amounts of data.
State-of-the-art methods use the 3D structure of a scene for precise visual localiza-
tion. However, 3D scene reconstruction is resource intensive in terms of hardware
requirements and computation time, making it infeasible to run on low-cost embed-
ded hardware. Unsupervised spatial representation learning with Slow Feature Anal-
ysis (SFA) enables computationally inexpensive localization and mapping. Chapter
8 analyzes SFA-based and state-of-the-art methods in two distinct settings: short-
term temporal and extreme spatial generalization, and compares the methods based
on localization accuracy and computation time.
SFA enables a mobile robot to learn a spatial representation of its environment from
images captured during an exploration phase. After the unsupervised learning phase,
a subset of the resulting representations code for the robot’s position. The repre-
sentation is spatially smooth and implicitly encodes the average travel time during
exploration. Following the SFA gradient allows the robot to navigate even around
obstacles without any planning. Earlier work (Metka et al., 2017) showed this basic
principle in noise-free simulation using two virtual cameras on a robot. Chapter 9
presents an extension to the approach to make it more robust and computationally
efficient. The experiments were performed on a lawn mower robot with a single
camera for navigation in free space and around obstacles.
Chapter 10 wraps up the thesis, provides the main takeaways and highlights the sci-
entific and technological impact of the work.
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Chapter 2

Literature Overview

Visual mapping creates a scene representation (i.e., a map of the environment) using
a camera, and localization infers the camera’s (or robot’s) location on the map using
a single snapshot (i.e., a single image or a set of stereo images). Localization, in gen-
eral, is a prerequisite for many robotic applications, autonomous cars, and AR/VR
systems.
Most approaches use a pre-built map or build such a map online. However, mapless
systems exist, e.g., motion integration systems based on feature tracking or optical
flow. These systems accumulate localization errors over time, like non-visual odom-
etry. Image retrieval (Arandjelovic et al., 2014; Balntas et al., 2018) is a method
for finding the best match between a query image and an image database, where the
image database can be position annotated (e.g., images with GPS position). Standard
image retrieval methods thus return the position of the best matching database image,
but interpolation between matches is also possible. Due to pose approximation, such
methods can only enable coarse localization compared to highly-precise map-based
methods (Sattler et al., 2019). The rest of this chapter will focus on methods that
employ a map for performing visual localization.
Figure 2.1 shows a diagram of different map-based visual localization approaches.
These can be divided into simultaneous (i.e., online) and non-simultaneous (i.e., of-
fline) visual localization and mapping techniques. As the name indicates, simul-
taneous methods (e.g., vSLAM) create an environment map and perform localiza-
tion within the map concurrently. In contrast, non-simultaneous approaches (e.g.,
learning-based) have separate mapping and localization phases; thus, these approaches
rely on a pre-built environment map for localization. The pre-built map can have
an explicit (e.g., 3D point cloud reconstruction) or implicit (e.g., neural network
weights) representation.
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FIGURE 2.1: Localization and Mapping Overview: Simultaneous approaches perform
mapping and localization in an online manner. In contrast, non-simultaneous methods
create an environment map (i.e., explicit or implicit map representation) in an offline step

and perform localization afterwards.

2.1 Structure-based Methods

The most traditional approach for visual localization relies on identifying point-like
features in images. It first builds a 3D map of feature positions in space and then
estimates the camera’s 6D pose relative to such features (Sattler et al., 2011; Sat-
tler et al., 2017; Liu et al., 2017; Sarlin et al., 2019). The process of creating a 3D
scene reconstruction (i.e., a map) using images from different locations and view-
points of the same scene is known as structure-from-motion (SfM) (Moulon et al.,
2013; Schönberger et al., 2016). The localization procedure consists of extracting
and matching 2D features of a test image to a 3D point cloud reconstruction com-
puted from a structure-from-motion (SfM) step. Afterwards, a subsequent step com-
putes a test image’s pose by solving a Perspective-n-Point (PnP) problem (Kneip et
al., 2011), typically using RANSAC (Chum et al., 2008). Various feature descriptors
have been proposed in the past (e.g., SIFT, SURF, BRIEF) to extract point-like fea-
tures from the visual scene, where the features are preferably unique and invariant to
changes in perspective and lighting. However, these handcrafted features are often
not unique and vary strongly with camera perspective and environmental conditions.
Thus the methods that rely on such features offer limited robustness against temporal
changes. To overcome this issue, several data-driven approaches are also proposed
that employ deep architectures (Schönberger et al., 2017) to learn point-like features
(DeTone et al., 2017; Dusmanu et al., 2019). Although structure-based methods offer
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precise localization accuracy in most scenarios, their performance in adverse condi-
tions is still limited (Toft et al., 2022). Another limitation of such approaches is that
both the mapping and localization steps are typically very costly in computation and
memory. Several authors (Sarlin et al., 2019; Humenberger et al., 2020) incorporate
image retrieval methods in the structure-based localization pipeline. These meth-
ods first retrieve the most relevant images and then look for correspondences within
those images. Thus, it helps to reduce the search space and speed up the algorithm
execution time. However, such methods then heavily rely on the quality of image
retrieval methods. To summarize, despite being the most precise localization meth-
ods, changing conditions and computationally expensive algorithms are still the main
challenges these methods suffer.

2.2 Learning-based Methods

In contrast to structure-based approaches, learning-based methods apply machine
learning techniques to perform regression from images to a 2D, 3D, or 6D camera
pose. These approaches are typically instantaneous, i.e., localization is performed on
each image independently. Unlike structure-based approaches, learning approaches
do not require calibrated cameras because pose regression is learned from the statis-
tics of scene appearance in an end-to-end manner with minimal assumptions. It is,
however, important that the camera setup stays the same between training and test-
ing (e.g., change of focus, zoom, camera chip, or lens) unless some form of image
augmentation is used. Like structure-based methods, localization learning methods
require an initial training phase for each new environment. Typically, supervised
learning methods generalize poorly in space (i.e., extrapolation and interpolation of
training poses), whereas generalization over environmental conditions (e.g., lighting
and weather) can be achieved if such data is part of the training set. State-of-the-art
methods for localization learning have an implicit map of the environment, i.e., no
explicit 2D or 3D model can be displayed to a human, e.g., for programming tasks
or indicating locations of objects. In contrast to structure-based methods, end-to-end
learning methods have minimal assumptions on the environment’s statistics, which
means that these methods do not require hand-engineered visual features. Thus, these
methods can be trained to work in unusual settings and situations (e.g., night-time,
desert-like structures, or repeating textures) where structure-based methods fail or
require manual intervention.
In recent times, the training of convolution neural networks (CNNs) for visual local-
ization has gained significant interest. Since many localization pipelines are highly
modular, several researchers have attempted to learn only parts of them using CNNs
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(Meng et al., 2017; Schönberger et al., 2018). Others use features from pre-trained
convolutional neural networks for the task of place recognition (Sünderhauf et al.,
2015; Sünderhauf et al., 2015). Features obtained from different layers are invariant
w.r.t viewpoint and condition changes. Absolute Pose Regression (APR) describes
a class of approaches for supervised end-to-end learning of absolute metric poses
from images. In (Kendall et al., 2015), authors have trained a convolutional neu-
ral network in an end-to-end way that learns to regress the 6D pose from a single
monocular image. The learned features are robust in challenging scenarios, for in-
stance, varying lighting conditions and weather effects. As an extension, the authors
have fine-tuned the model using a geometric loss function (Kendall et al., 2017) and
achieved a higher localization accuracy than the base model. Several other archi-
tectures have been proposed to improve the localization accuracy of such methods
(Brachmann et al., 2017; Valada et al., 2018). Despite impressive results, end-to-end
learning for visual localization does not compete with the structure-based methods
in terms of pose accuracy. Recent studies (Sattler et al., 2019) have shown that
CNN approaches do not necessarily generalize well beyond the training data in prac-
tical situations, limiting their applicability in the real world. The work highlights
that end-to-end learning is currently competing with image retrieval methods rather
than pose estimation using 3D geometry. Moreover, supervised pose regression has
significant training overhead for each new environment in terms of computational
load and is practically infeasible without a GPU. Supervised learning, especially on
dedicated hardware like GPUs, has drastically improved in recent years. Still, even
with such hardware, training time ranges from hours to days. Additionally, ground
truth poses are typically generated by structure-based methods before training time,
adding the overhead for map generation to the process. The training process is in-
feasible on embedded devices unless they are supported by dedicated hardware like
NVIDIA Jetson1. However, unlike structure-based methods, APR-based methods re-
quire less memory and have a constant inference time after training. To summarize,
these methods can learn invariance to environmental conditions and thus can perform
better than structure-based approaches in such scenarios. However, the potential lim-
itations include costly labeled-data generation (typically with SfM), computationally
expensive mapping phase, high-end hardware requirements (i.e., GPUs), and limited
generalization capabilities.
In contrast to end-to-end supervised learning, semi-supervised and unsupervised lo-
calization learning strongly reduces or eliminates the need to generate costly ground

1https://www.nvidia.com/de-de/autonomous-machines/embedded-systems/
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truth labels. In these approaches, a relatively low-dimensional environmental repre-
sentation is generated without labels, which is then used for localization or naviga-
tion tasks. This work is based on an unsupervised Slow Feature Analysis method
(Wiskott et al., 2002), which will be described in greater depth in chapter 3.

2.3 Simultaneous Localization and Mapping (SLAM)

SLAM creates a map of an unknown environment and locates an agent within this
map concurrently. Thus, in contrast to structure- and learning-based methods, SLAM
is an online method, i.e., localization is available from the beginning and without a
dedicated training phase. SLAM using cameras only is also referred to as visual
SLAM (i.e.,vSLAM). The focus in this section will be on approaches that use vi-
sion as the only input modality. However, non-visual sensors can also be employed
for SLAM algorithms (Durrant-Whyte et al., 2006; Bailey et al., 2006). Without a
map, SLAM reduces to odometry, which accumulates drift over time. Visual SLAM
approaches can be divided into indirect and direct methods. The indirect approach
detects and extracts geometric features (also known as key points) from images and
matches them across consecutive frames to recover the camera pose. In contrast, the
direct approach considers the entire image and works on pixel intensity without pre-
processing. Both methods have their pros and cons. For instance, indirect techniques
are much faster due to the usage of sparser key points and, thus, are highly rele-
vant for real-time applications. On the other hand, the direct approaches are much
more accurate and can perform better in environments with sparse texture (Zhu et al.,
2021). The following paragraphs will highlight some of the works in both categories.
Indirect methods are all about detecting, extracting, and matching geometric features
across images to estimate pose and create a sparse scene representation. Differ-
ent types of geometric features have been used by different researchers, e.g., points
(Rublee et al., 2011; Bay et al., 2008), corners (Shi et al., 1994), and lines (Gioi et
al., 2010). The research community predominately uses methods based on point-like
features due to their simplicity and applicability in real-world applications. How-
ever, several approaches (Pumarola et al., 2017; Gomez-Ojeda et al., 2019) have also
been proposed that combine different geometric features (i.e., point, line, plane) for
improving the localization accuracy and robustness of the SLAM-based algorithms.
MonoSLAM (Davison et al., 2007) is the first-ever single camera-based algorithm
that achieves real-time performance for simultaneous mapping and localization. The
front end uses shi-Tomasi features for the detection and matching steps, while the
back end is based on the Extended Kalman Filter (EKF) (Smith et al., 1990) that
optimizes and generates a sparse environment map. Despite its significance in the
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SLAM community, the method does not apply to larger scenes due to its computa-
tional complexity. PTAM (Parallel Tracking and Mapping) algorithm (Klein et al.,
2007) splits the tracking and mapping into separate threads on a CPU for tackling
the computational issue of MonoSLAM. The method ensures real-time performance;
however, the absence of a loop closure detection module causes the system to accu-
mulate errors over a more extended period. In SLAM terminology, a loop closure
occurs when mapped features (i.e., landmarks) are re-detected from a new position,
which facilitates in reducing both landmark errors in the map and pose errors of the
agent. ORB-SLAM (Mur-Artal et al., 2015) is considered a successor of the PTAM
algorithm and is also one of the most widely used visual SLAM methods. Unlike
PTAM, the authors added a vision-based loop detection module based on the bag of
words model (Galvez-López et al., 2012) to prevent the system from accumulating
errors over time. As the name indicates, the method uses ORB features for detec-
tion and matching steps. In contrast to PTAM, it runs three threads simultaneously
(i.e., tracking, mapping, and loop closing). The method is well known for its per-
formance on CPU in real-time and also has been used in applications ranging from
hand-held devices to self-driving cars. Since its first version, several improvements
to the method have been proposed (i.e., ORB-SLAM2 (Mur-Artal et al., 2017) and
ORB-SLAM3 (Campos et al., 2021)). The newest version allows the technique to
perform re-localization even when the tracking is lost due to poor visual information
and enables integration of multiple sensor modalities for SLAM (e.g., visual-inertial
SLAM). Despite their superior performance, these methods are highly dependent
on environmental features, which makes them less applicable in textureless environ-
ments.
In contrast, direct methods eliminate the need to perform detection and feature-
matching steps by directly operating on the entire image. The advantage of retaining
complete image information is that these methods can adapt to environments with
sparser features. In contrast, the performance of feature-based techniques would
deteriorate under such conditions. Unlike sparse scene mapping using indirect ap-
proaches, direct methods generate a semi-dense representation of the environment.
However, it is also possible to construct dense maps using these methods. DTAM
(Dense Tracking and Mapping) is the first practical method in the direct approaches
for visual SLAM (Newcombe et al., 2011). The technique tracks camera motion by
comparing the current image with the synthetic model view generated from the map.
Due to dense map generation, the method offers more robust performance in fea-
tureless environments and can also handle motion blur. However, the main limiting
factor is that real-time performance can only be achieved using a GPU. Large Scale
Direct SLAM (LSD SLAM, Engel et al., 2014) is a well-known direct visual SLAM
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method, which uses direct image alignment for camera tracking, minimizes the pho-
tometric error, and generates a semi-dense scene representation. The technique en-
ables precise large-scale localization and works in real time on a CPU. Semi-dense
Visual Odometry (SVO, Forster et al., 2014) extracts features from keyframes and
uses the direct approach for pose estimation on the tracked features between consec-
utive camera frames. Its advantages include constant run time, higher framerate, and
localization accuracy. However, it is not a complete SLAM system due to the ab-
sence of loop closure detection or a global map optimization module. In contrast to
SVO, Direct Sparse Odometry (DSO, Engel et al., 2018) does not extract image fea-
tures. Instead, it evenly subsamples image pixels across regions with a high gradient,
making the approach effective for featureless environments. Although the method
does not incorporate a re-localization module, the resulting maps have a relatively
small drift compared to other visual odometry approaches.
To summarize, the algorithms within the visual SLAM category range from sparse
indirect to dense direct methods. In general, decades of SLAM research exist, yet
there is still not a single standout method that can work in any environment using
any sensor type. Instead, the employed solution depends highly on the robot, envi-
ronment type, and computational constraints (Cadena et al., 2016).

2.4 Semantics-based Methods

An exciting alternative to overcome some challenges posed by visual localization is
to use semantic information like objects or landmarks. The breakthrough in Convolu-
tional Neural Networks (CNNs) performance for object detection (Krizhevsky et al.,
2012) has allowed researchers to incorporate it into the traditional SLAM pipeline,
which has led to the creation of semantically meaningful maps. Earlier work (Bao et
al., 2012) in this field has extended the structure-from-motion (SfM) pipeline for joint
estimation of camera parameters, scene points, and object labels. However, its com-
putational complexity limits the method’s ability to operate in real time. SLAM++
(Salas-Moreno et al., 2013) detects a set of known object instances and maps them
with an object pose graph. Other object-level SLAM methods (Frost et al., 2018;
Sucar et al., 2018) use object detection in a scene to solve the problem of scale un-
certainty and drift of monocular SLAM. In (Gálvez-López et al., 2016), the authors
considered an algorithm based on bags of binary words (Galvez-López et al., 2012)
that leverages a massive database of objects. To improve the map and find the real
scale, the monocular SLAM algorithm and the object recognition algorithm exploit
not only the object rigidity constraints but also the earlier observations acquired by
SLAM that serve as cues for the location of the objects in the present image. This
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approach leads to faster and more detections. Thus, it provides more geometrical
constraints to SLAM. However, the method does not show its ability to work with dy-
namic objects. QuadricSLAM (Nicholson et al., 2018) is an object-oriented SLAM
that does not rely on prior object models. Rather it represents the objects as quadrics,
i.e., spheres and ellipsoids. It jointly estimates a 3D quadric surface for each object
and camera position using 2D object detections from images. In (Bowman et al.,
2017), the authors use semantic objects, e.g., chairs and doors, in a semantic SLAM
approach. The proposed system performs continuous optimization over the poses
while it discretely optimizes the semantic data association. Therefore, it divides the
metric semantic SLAM into two sub-problems. The method couples the inertial, ge-
ometric, and semantic information into a single optimization framework. Fusion++
(Mccormac et al., 2018) is another object-level SLAM system that focuses on indoor
scene understanding with an RGB-D camera. The system produces semantically
labeled Truncated Signed Distance Function (TSDF) reconstructions of the objects
with the Mask-RCNN object detector. Afterward, the system adds the TSDF object
instances to the map for tracking, graph optimization, and re-localization. In (Hos-
seinzadeh et al., 2019), the authors include an object detector in a monocular SLAM
framework to represent generic objects as landmarks. Although camera localization
is precise with sparse point-based SLAM, it lacks semantic information. CNN-based
object detectors perform well in providing essential information about the objects
from single images. Therefore, this method uses CNN-based object and plane detec-
tors to construct a sparse semantic map for localization. Semantic objects and plane
structures, along with their completed point clouds, are included in the SLAM bundle
adjustment. However, the method requires a post-processing step to recover the scale
of the inserted objects, which is expensive and error-prone. In (Thrun, 1998; Zhao
et al., 2018), the authors use machine learning-based approaches for localization in
indoor environments relative to landmarks. CubeSLAM (Yang et al., 2019) com-
bines 2D and 3D object detection with SLAM pose estimation by generating cuboid
proposals from single-view detections and optimizing them with points and cameras
using multi-view bundle adjustment. In (Parkhiya et al., 2018), the authors construct
category-level models with CAD collections for real-time object-oriented monocu-
lar SLAM. The authors develop a rendering pipeline that helps in generating large
amounts of datasets with limited hand-labeled data. The proposed system learns 2D
features from category-specific objects, such as chairs and doors, with a deep net-
work. The next step then matches the learned features to a 3D CAD model for pose
estimation of the semantic object. The final step adds these semantic objects and the
estimated robot’s pose from VO to an optimizing graph framework for obtaining a
metrically correct robot pose.
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Most existing literature on object-SLAM considers indoor scenes or outdoor au-
tonomous driving scenarios. In both cases, it is possible to directly use a pre-trained
CNN to identify enough objects in a scene without training a detector on custom
objects. However, the problem arises when a scene lacks pre-trained objects. In this
case, training a custom object detector becomes a necessary pre-condition for most
object-based localization approaches, which slows down the process of adapting such
methods in new environments.

2.5 Bio-inspired Methods

In contrast to technical approaches, various methods for visual localization take in-
spiration from neurobiological systems. The primary motivation for such methods
is that many animals exhibit excellent localization and navigation capabilities and
quickly find their way to a food source or nest location, even in challenging environ-
mental conditions. The paths taken by these animals may not be optimal, but they
are flexible and rapidly generated. This motivated many researchers to model the an-
imal’s spatial cognitive processes and use them to propose lightweight and efficient
navigation solutions for artificial agents (Milford et al., 2004; Cuperlier et al., 2007;
Metka et al., 2018; Chen et al., 2019; Espada et al., 2019).
The discovery of the Place and Head-Direction Cells (O’Keefe et al., 1971; Taube et
al., 1990) in the hippocampus region of the rodent brain has remarkable significance
in this realm. Place Cells are responsible for encoding the animal’s location in the
environment, while Head-direction Cells encode the animal’s orientation in space. In
(Arleo et al., 2000), the authors present the computational model of these cells. The
combination of visual cues and path integration in a Hebbian learning framework
creates a population of Place Cells, enabling robot navigation. The work (Barrera
et al., 2008) follows a similar approach and encodes unique places and their spatial
relations in a topological map. The model also learned and unlearned navigation ac-
tions towards specific goal locations. Ants combine path integration and visual cues
to navigate to their nest in desert environments (Wehner et al., 1996; Collett et al.,
2013). Lambrinos et al., 2000 implement ant navigation on a real robot in a desert
environment using artificial landmarks. The method uses wheel odometry for path
integration and a compass system for obtaining global head direction. The compass
allows the technique to align the current panoramic view to the stored snapshot of
the target location. Afterwards, the computation of homing vector based on image
matching enable navigation. The researchers (Philippides et al., 2011) suggest that
ants might employ the skyline region to determine the homing direction due to their
dichromatic vision with peak sensitivities in the ultraviolet and green range. In (Stone
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et al., 2014), the work presents topological localization results using binary images
that encode sky and non-sky pixels representing places along a 2km route. Another
vision-based SLAM algorithm (Milford et al., 2008) derived from the computational
model of a rodent’s hippocampus builds the map online and performs re-localization
in previously familiar scenes. The authors demonstrate successful mapping of a 66-
kilometer urban road network with a single webcam using the proposed biologically
inspired model. In (Milford et al., 2014), the authors link biology and robotics and
provide an overview of conventional and biomimetic models for goal-directed navi-
gation.
Metka et al., 2013 employed a bio-inspired model for visual localization on a real
robot in an outdoor environment. The model strongly depends on the movement
statistics of the robot during the learning phase. Thus, the learned representation
encodes localization-relevant (i.e., position) information if the robot’s orientation
changes faster than its position during training. However, it is undesirable to mount
a rotating camera on a robot due to mechanical stability. Thus, the authors artifi-
cially generated the robot rotation by using an omnidirectional mirror, which allows
for generating an orientation-invariant representation of the robot’s position. The
work has proven the concept of SFA-based localization for outdoor scenarios with
mean localization errors of less than 6%. To summarize, it establishes a system that
learns instantaneous representations of the robot’s position in an unsupervised learn-
ing process and achieves similar or equal performance compared to state-of-the-art
visual SLAM methods, i.e., ORB and LSD-SLAM (Mur-Artal et al., 2015; Engel
et al., 2014), in different test scenarios (Metka et al., 2018). Despite the impressive
results, the learned representations are likely to be valid only for a shorter period, i.e.,
when the image statistics are similar to the training. Hence, this model has short-term
stability w.r.t environmental conditions, which fail to perform localization if tested
with data having different environmental conditions than the training set.
In summary, various image-based methods exist for mapping and localization, and
these methods fall mainly into geometric feature-based and learning-based cate-
gories. Despite remarkable results, many challenges still exist which are crucial
to address for achieving long-term robot autonomy. Therefore, this thesis addresses
several open challenges (e.g., robustness to changing conditions and computationally
feasible algorithms) and proposes solutions to advance vision-based localization and
mapping that would foster long-term robust robot operation in the real world.
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Chapter 3

Slow Feature Analysis

This chapter introduces an unsupervised learning approach called Slow Feature Anal-
ysis (SFA). It is the core algorithm that forms the basis of this work in the context
of learning the spatial representation of a robot’s surroundings. SFA, motivated from
computational neuroscience, is based on slowness as a learning principle that extracts
slowly varying features from a quickly changing input signal.

3.1 Background Motivation

We can characterize a visual scene into a high and low-level representation. A high-
level representation encodes a scene’s essential aspects like an object’s identity and
position. In contrast, a low-level representation encodes local features such as the
color of the individual pixels. Thus, the former representation has a higher abstrac-
tion level since it explicitly contains the relevant information. One of the differences
between these two representations is the time scale on which they vary, as the local
features tend to change on a faster time scale compared to high-level features. For in-
stance, the structure and presence of an object are likely to remain unchanged over a
more extended period than its localized features (i.e., texture in a small patch), which
are more sensitive to perspective or environmental changes. This observation forms
the basis of the Slow Feature Analysis (SFA) algorithm, a successful extraction of
slowly varying features from the quickly changing input signal can help to generate
a useful representation of the visual environment.
Consider a movie strip of a visual scene as shown in fig. 3.1. Just by looking at the
strip from left to right, we can easily recognize the movement pattern of the mon-
key that leaves the view towards the left. However, this high-level representation is
distributed non-linearly over the response of sensory receptors in the retina, and the
brain must reconstruct this information from their response to produce a meaningful
representation. By extracting these slowly varying features from the input signal,
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FIGURE 3.1: Slowness Principle - Reproduced from Wiskott et al., 2011: The movie
strip in the figure represents a natural visual scene in which the monkey is leaving the
field of view towards the left. Nevertheless, this high-level information about the monkey’s
presence and position (green traces) is non-linearly distributed over the response of sensory
receptors (blue traces) in the retina. These high-level signals vary smoothly over time. The
brain may use this insight to learn a representation that transforms the blue traces into green

ones.

we can recover the underlying external causes of this signal. This is the objective
of Slow Feature Analysis (SFA), i.e., to learn a representation that instantaneously
maps a highly varying input signal to a slowly varying output signal.

3.2 Mathematical Definition

Slow Feature Analysis (Wiskott et al., 2002) transforms a multidimensional time
series x(t), in our case images, along a trajectory, to slowly varying output signals.
The objective is to find instantaneous scalar input-output functions g j(x) such that
the output signals

y j(t) : = g j(x(t)) (3.2.1)

minimize

∆(y j) : = 〈ẏ2
j〉t (3.2.2)
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FIGURE 3.2: Schematics of the optimization problem solved by SFA - Reproduced
from Wiskott et al., 2011: Given a high-dimensional time-series signal x(t), SFA learns
instantaneous functions g(x) that transforms the input into slowly varying output signals,
y(t). Functions g(x) must be instantaneous; for instance, one time slice of the output is

based on one time slice of the input, as indicated by the yellow color.

under the constraints

〈y j〉t = 0 (zero mean), (3.2.3)

〈y2
j〉t = 1 (unit variance), (3.2.4)

∀i < j : 〈yiy j〉t = 0 (decorrelation and order) (3.2.5)

with 〈·〉t and ẏ indicating temporal averaging and the derivative of y, respectively.
The optimization problem solved by Slow Feature Analysis (SFA) is shown in fig. 3.2.
The ∆-value in equation (3.2.2) defines the temporal variation of the output signal
y j(t), and its minimization is the objective function. A lower value indicates less
signal variation over time, thus means slowly varying signals. The constraints in
equations (3.2.3) and (3.2.4) normalize all output signals to a standard scale to make
their time derivative comparable and avoid the trivial solution, y j(t) = constant. The
constraint in equation (3.2.5) enforces that different output signals code for different
aspects of the input. It also induces an order such that output signals are ordered by
the degree of their invariance. It is important to note that these transformations must
be instantaneous, so any trivial solution like a low-pass filtering is not possible.

3.3 The Algorithm

The optimization problem, as defined in the previous section, is one of variational
calculus, which is generally difficult to solve as it requires optimizing over functions,
g j, not over a set of parameters. However, if the input-output function components,
g j, are constrained to be a linear combination of a finite set of nonlinear functions
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(e.g., all polynomials of degree two), one can transform the variational problem into
a more conventional optimization problem. Below are the steps to find the function
g(x) that extracts the slowly varying features from the input signal (Wiskott et al.,
2011):

1. Expand the input signal into a space of nonlinear functions.

2. The expanded signal is normalized, so all constraints required by the SFA op-
timization problem are satisfied. It is referred to as whitening or sphering and
can be done by applying principal component analysis to the data.

3. Temporal variation is measured in the normalized space by calculating the time
derivative of the sphered signal.

4. The slowest varying directions are extracted by finding the direction of least
variance of the time derivative signal. This step can also be performed with the
principal component analysis in which the directions are the principal compo-
nents with the smallest eigenvalues of the derivatives.

This work uses the MDP (Zito et al., 2009) implementation of SFA, which is based
on solving a generalized eigenvalue problem.

3.4 Hierarchical SFA Network

Due to the nonlinear expansion of input signals, the input dimensionality increases
with the increasing number of inputs. It induces a significant problem for data with
high dimensions, for instance, natural images. One ideal solution to overcome this
curse of dimensionality issue is to divide the input data into smaller regions and
apply Slow Feature Analysis (SFA) to these regions individually. The next step con-
catenates obtained solutions, which serve as an input for the next iteration of Slow
Feature Analysis (SFA). Thus, the application of this approach helps to avoid the di-
mensionality problem. However, the extracted slow features might not be identical to
the global solution obtained with the complete input. This strategy also relies on the
locality of feature correlations in the input data. The splitting of the data into smaller
regions leads to a hierarchical SFA network, which is similar to the feed-forward
organization of the visual system, as shown in the fig. 3.3. The size of the recep-
tive field is bigger for higher layers, so it is possible to extract increasingly complex
features at these layers, e.g., encoding information of complete objects.
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FIGURE 3.3: Schematic of a two-layer hierarchical SFA network - Reproduced from
Wiskott et al., 2011: Linear SFA is applied to each receptive field for dimensionality re-
duction, followed by quadratic SFA, i.e., SFA2 (linear SFA after a quadratic expansion).

3.5 Applications in Computational Neuroscience

There are various practical applications of the algorithm, especially in computational
neuroscience. It has been applied to the self-organization of complex-cell receptive
fields, invariant object recognition, and nonlinear blind source separation (Wiskott
et al., 2011). This section describes the relevant application in the context of local-
ization.

3.5.1 Oriospatial Cells in the Hippocampus

The hippocampus is a brain structure important for episodic memory and navigation.
Different cell types are present in the hippocampus and neighboring areas, whose
responses correlate with the animal’s position and head-direction in space. These
cells include Grid, Place, Head-direction, and Spatial-view Cells, collectively called
Oriospatial Cells. Grid Cells are not spatially localized but show a regular ring ac-
tivity on a hexagonal grid in space while remaining invariant to orientation. Place
Cells are spatially localized and code for the animal’s position in space while re-
maining invariant to orientation. Head-direction Cells are selective for the direction
of the animal’s head, but they are invariant to its position. Spatial-view Cells only fire
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FIGURE 3.4: Grid Cell, Place Cell, Head-Direction Cell, and Spatial View Cell -
Reproduced from (Franzius et al., 2007): The arrows indicate Oriospatial activity, and
their length shows the strength of activity at the arrow base if the animal looks in the
direction of the arrow. The Grid Cell is not spatially localized but repeats in a hexagonal
grid, whereas the Place Cell is spatially localized, while both are orientation invariant. The
Head-Direction Cell’s activity shows a global direction preference but is spatially invariant.

Spatial-view Cell fire only when a specific view is fixated (indicated by x).

when a particular part of the environment is in the animal’s field of view while they
are neither orientation invariant nor position invariant. Fig. 3.4 shows the difference
between these cells. These Oriospatial Cells probably form the neural basis of an
animal’s ability to self-localize and navigate (Knierim et al., 1995).

Despite a rapid change of primary sensory signals (i.e., visual input) during an
animal’s movement in an environment, the firing activity of the Oriospatial Cells
changes relatively slowly. This observation forms the basis of a model for the un-
supervised formation of such cells based on visual input with the hierarchical SFA
network and sparse coding (Franzius et al., 2007). Fig. 3.5 shows the model archi-
tecture. It consists of a hierarchical network to overcome the problem of high input
dimensionality. The first three layers perform the same sequence of steps, including
linear SFA for dimensionality reduction and quadratic expansion of the reduced sig-
nals, followed by linear SFA for feature extraction. Linear SFA can effectively find
better solutions by a nonlinear expansion of its inputs, similar to the application of
nonlinearities in neural networks. However, this expansion increases the feature di-
mensionality. Therefore, the first step performs dimensionality reduction with linear
SFA for computational efficiency. Subsequently, the next step projects the features
into the space of quadratic monomials and applies SFA again. The output of the last
layer produces a distributed representation of the Oriospatial Cells. The last layer
performs an additional sparse coding step to get a localized representation of these
cells. The network is trained with visual input as perceived by a virtual rat running
through a textured environment. It is easy to consider that the visual input fluctuates
faster while the rat changes its position or orientation on a slower time scale. Since
SFA extracts slowly varying features, the final representation encodes either position
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FIGURE 3.5: Model Architecture - Reproduced from (Franzius et al., 2007): At a given
position and orientation of the virtual rat (arrow) in the naturally textured virtual-reality
environment (A), input views are generated (B) and processed in a hierarchical network
(C). Lower layers perform the same sequence of steps, including linear SFA for dimen-
sionality reduction, quadratic expansion, additive noise, linear SFA for feature extraction

and clipping; the last layer performs sparse coding (either ICA or CL) (D).

or orientation depending on the movement statistics of the rat. So, a purely sensory-
driven model can reproduce the firing characteristics of Place, Head-direction, or
Spatial-view Cells representing the spatial information in the brain of rats.

3.6 Learning Scene Representation with SFA

This section gives an intuition of how this work exploits SFA to map a robot’s sur-
roundings for performing tasks like localization and navigation. For learning a scene
representation with SFA, the goal is to find functions representing a robot’s position
on the x− and y−axis as slowly varying features while being independent of other
variables like its orientation or condition changes. SFA-based learning depends on
temporal statistics of the input data; therefore, if the relevant information (here: robot
position) during training changes on a slower time scale compared to other variables,
it will be encoded as the slowest features in the learned representations. Consider
an image sequence recorded by a robot in an environment, as shown in fig. 3.6. For
illustration, if we plot the value of a single pixel over the entire image sequence
(red signal), it is apparent that its value changes much faster than the robot’s x− and
y−position over time. This difference in the time scale between the primary sen-
sory input (i.e., pixel value in a video) and the latent information (i.e., the robot’s
position) will cue SFA to learn a representation that implicitly encodes the robot’s
position (x,y) as slowly varying features. The work in (Franzius et al., 2007) pro-
vides a detailed mathematical analysis of SFA for localization based on the inputs'
temporal statistics.
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FIGURE 3.6: Learning Scene Representation with SFA - Intuition: The figure on the
left shows an image stream. On the right, it shows the value of a single pixel plotted for the
complete sequence (red) and the robot’s x− and y−position. The plot shows that the visual
input (i.e., pixel value in a video) varies on a faster time scale than the robot’s position.
This difference in time scale will guide SFA to encode the robot’s location (x,y) in the

final learned representation as slowly varying features.
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Chapter 4

Data Acquisition

A significant contribution of this work is the collection of camera recordings from
indoor and outdoor scenes for robot localization. This chapter thus presents the data
collection setup and describes the recorded datasets. The experiments were initially
conducted in controlled settings using the data generated from a virtual reality sim-
ulator for the proof of concept. Later, the same experiments were performed using
real-world images to validate the proposed methods' practicality.

4.1 Simulated Data Generation

The artificial datasets used in this work consist of images generated from two sim-
ulation software (i.e., Blender1 and WeBots2). The simulated environment mimics a
natural garden-like scene and consists of houses, trees, and man-made objects. A vir-
tual robot traverses an area of size 15×15 meters and captures simulated panoramic
views of size 1200× 200 pixels. During traversal, it also stores the ground-truth
robot position (x,y) corresponding to each image. The data set consists of 15 record-
ings generated by a random variation of lighting parameters and placing dynamic
objects in a scene. The lighting parameters include energy ∈ [3,8], the y-coordinate
of the light source ∈ [−10,10]m, and the intensity of the red channel ∈ [0.5,1]. The
dynamic objects include everyday things like cars, bicycles, chairs, and umbrellas.
Figure 4.1a and 4.1b shows some images generated from the two simulator packages,
respectively. Figure 4.2 shows a robot’s traversed trajectory in a virtual scene.

1https://www.blender.org/
2https://cyberbotics.com/
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(a)

(b)

FIGURE 4.1: Simulated Visual Data: Images generated from Blender (a) and WeBots (b).

FIGURE 4.2: The robot’s traversed trajectory in a simulated environment.
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4.2 Real-world Data Collection

This section describes collecting visual data from real-world environments using a
modified domestic robot.

4.2.1 Hardware

The real-world recordings were collected from a prototype version of Honda’s Miimo

robotic lawn mower, as shown in fig. 4.3a. It is equipped with a 180° fisheye camera
mounted on its top to capture views of an environment. The camera takes omnidirec-
tional images of size 2880× 2880 pixels (fig. 4.3b) with a frame rate of 5 fps. The
robot also has an integrated ARM processor (i.MX6 ARM board, single-core @800
MHz) and an internal SSD to store the data during recordings.

FIGURE 4.3: (a) An autonomous lawn mower robot with a fisheye camera was used for the
experiments. (b) shows a captured omnidirectional image.

4.2.2 Recording Environments and Setup

The datasets were recorded from two outdoor scenes and an indoor lab. The unstruc-
tured garden-like outdoor environments vary w.r.t their size and complexity. For
simplicity, the following text will refer to them as small-scale (9× 15 meters) and
large-scale (44× 57 meters) gardens. In contrast, the indoor lab (4× 10 meters)
presents a controlled, real-world environment with artificial lighting as the major
light source.
Each robot recording session has two operational phases. In the first phase, the robot
traverses the border of an area by using the standard wire guidance technology, while
in the second phase, it moves freely within the area defined by the border wire. Fig-
ure 4.4 shows the robot’s trajectories in one of the recording sessions from each
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environment. In both working periods, it saves the images and the corresponding
odometry information to its onboard storage.

FIGURE 4.4: (a-c) show the robot’s traversed trajectories in one of the recording sessions
from each environment. The solid line shows the robot’s traversal in the first working phase

(border run), while the dashed line shows its traversal in the second phase (infield run).

4.2.3 Data Post-processing

The data post-processing includes two steps. The first step unwraps the captured om-
nidirectional images to their associated panoramic views of size 1200×200 pixels, as
shown in fig. 4.5. The second step obtains the ground-truth 2D robot position (x,y)
for each image from the odometry information. Please note that the ground-truth
data acquisition is necessary to evaluate the performance of the proposed localiza-
tion methods.

FIGURE 4.5: (a) and (b) show an omnidirectional image and its panoramic projection.
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Since the robot in the first working phase always starts and ends at the base sta-
tion by following a wire buried in the ground, it is possible to estimate the robot’s
ground-truth metric position (x,y) using a method described by Einecke et al., 2018.
The authors used wheel odometry and additional weighted loop closure for high-
quality localization. However, the technique only estimates the metric shape of the
boundary. Thus, the method can not be used to obtain the 2D coordinates (x,y) of
the images when the robot moves freely in the second working phase (i.e., infield
run). For the second working phase, the ground-truth data (x,y) was obtained using
a commercial photogrammetry software, i.e., Metashape3. It reconstructs a 3D point
cloud of the scene and estimates the camera trajectory (i.e., poses from which the
images were captured) from a set of unordered 2D image collection (fig. 4.6). The
software produces precise localization results (typically in the cm range). However,
the procedure to generate camera poses using it takes hours of computation, depend-
ing on the dataset. Thus it is not suitable to be used directly for robot localization.
After ground-truth data acquisition, the system retained a single image per 2D po-
sition (x,y) while discarding the rest of the images for the cases when the robot is
stationary.

FIGURE 4.6: Structure-from-motion (SfM) - Reproduced from Snavely et al., 2006: It
produces 3D scene geometry and camera motion from an unordered 2D image dataset.

4.2.4 Recorded Data Sets

The recorded data sets from the two gardens consist of 25 recordings collected over
one and a half years. The recordings contain environmental effects like different day-
time, lighting changes, weather, seasons, and dynamic objects. Thus, the image sets
cover the most challenging situations a system needs to tackle for successful visual
localization. Figures 4.7a and 4.7b show images collected from the small and large-
scale gardens. The indoor datasets consist of 10 recordings and present a relatively

3https://www.agisoft.com/
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constrained environment. These recordings were used for the robot navigation ex-
periments and will be explained later in chapter 9. The figure 4.8 shows some images
from the indoor lab.

(a)

(b)

FIGURE 4.7: Real-World Outdoor Data: (a) and (b) shows images collected from the
small and large-scale gardens.
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FIGURE 4.8: Real-World Indoor Data: Images collected from the indoor lab.
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Chapter 5

Visual Localization and Mapping
Pipeline

Visual localization and mapping enable an entity (e.g., robots, self-driving cars) to
locate itself in an environment and create a consistent representation of its surround-
ings using a camera. This chapter presents the proposed pipeline for mapping an
environment and using the learned representation to perform localization and navi-
gation.

5.1 Mapping Pipeline

Figure 5.1 shows an overview of the proposed pipeline for learning scene represen-
tation using Slow Feature Analysis (SFA). The input to the pipeline are omnidirec-
tional images collected by a robot recording session. The pre-processing module
unwraps the omnidirectional input images to panoramic views and then applies one
of the following three pre-processing approaches to the images:
Raw pixel values: The first approach uses the gray-scaled panoramic images without
any further pre-processing.
Fourier features: The second approach extracts row-wise Fourier features from the
panoramic images and retains the magnitude part corresponding to the lowest 15
frequency components. Representations learned with SFA strongly depend on tem-
poral statistics and much less on modality or pre-processing (Franzius et al., 2007).
Extracting Fourier components acts here as a compression that preserves temporal
statistics and distinct sensory representations for each position (x,y). A different
viewpoint of the same location (x,y) usually degrades localization performance.
Extracting Fourier magnitudes from upright images is a simple and effective pre-
processing for localization since all views under yaw rotation from the identical po-
sition (x,y) yield the same feature vector. Hence, it allows achieving orientation
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invariance since the magnitude part of Fourier components is not dependent on robot
direction, as shown in (Menegatti et al., 2003; Ishiguro et al., 1996). The compact
Fourier representation obtained for each image by the pre-processing approach is
used to learn SFA representation.
Landmarks: The third approach identifies landmarks (i.e., salient regions, fig. 5.1)
in a scene and then learns spatial representations relative to them. Chapter 7 explains
the procedure to recognize and extract the landmarks from the input panoramic im-
ages. The system rescales all landmark views to a fixed size before feeding them to
the mapping module for learning SFA representation.
The later chapters of this thesis will discuss the pros and cons of each approach.
The pre-processing module is the same for training (mapping) and test (localization)
images. The mapping module uses unsupervised learning capabilities of Slow Fea-
ture Analysis (SFA) (Wiskott et al., 2002) to learn the spatial representation of an
environment from the training data. Depending on the pre-processing method, the
module employs a different SFA network architecture for learning slow features (c.f.
5.1.1). The pipeline’s output is a trained SFA model, which can then be utilized for
the localization and navigation tasks.

FIGURE 5.1: Mapping Pipeline: The input to the pipeline are fisheye views. The pre-
processing module projects input images to panoramic views and extracts relevant image
representation based on the selected approach (i.e., raw pixels, Fourier Features, or Land-
marks). The mapping module uses the training set data to learn the spatial representation

using SFA. The output of this pipeline is the spatial representation of an environment.
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5.1.1 Network Architecture and Training

As mentioned earlier, the system learns slow features using a different SFA network
architecture depending on the image representation. The core SFA learning algo-
rithm is the same for all variants; the only difference lies in the predefined network
settings to account for different input dimensionality. Figure 5.2a and 5.2b show the
SFA network architecture used for the experiments to learn scene representation us-
ing complete (i.e., raw pixels) and landmark images, respectively. The architecture
consists of a hierarchical network to cope with high input dimensionality, as learning
slow features from images in a single step is computationally infeasible. The hier-
archical network consists of four converging layers, where the first three layers have
multiple identical nodes arranged on a regular grid and the last layer has a single
node. The first layer performs an extra step of patch normalization on input images
to mitigate the effects of poor contrast in images due to glare or some other factors.
Apart from that, each node in a layer performs linear SFA for dimensionality re-
duction, quadratic expansion of the reduced signals, and another SFA step to extract
slow features. The hierarchical network makes a tiny input region visible to a node,
and only this region (i.e., receptive field) thus influences a node’s output. The size
of receptive fields, the distance between the adjacent receptive fields, and expansion
dimensionality depend on predefined network settings, which were slightly adapted
in the experimentation of this work to account for different image resolutions. How-
ever, the hierarchical network, in general, is robust under various parameter settings
(Franzius et al., 2007). Tables 5.1 and 5.2 report the network parameter settings
for hierarchical SFA on complete and landmark images, respectively. The region of
input visible to a node increases with each layer. These layers converge onto a sin-
gle node whose first eight slowest outputs s1...8, also called SFA-output units, were
used for the experiments. The first two units s1,2 ideally encode the robot’s x- and
y-position, respectively. The higher units s3...8 encode a mixture of the first two units
or higher modes. Using a higher number of slow feature output units (i.e., more than
the first eight s1...8 SFA units) results in overfitting the training data (Metka, 2019).
Therefore, this work uses up to the first eight slow features s1...8 for localization and
navigation tasks.

Network Training: The system trains the layer in an SFA network with all tempo-
rally ordered training images. Instead of loading all images once, the system divides
the training data into small batches, and each batch is then passed to the layers se-
quentially. Further, to maintain the continuity between input images, the last image
of a batch is re-inserted to the next one. When the training of the nth layer finishes,
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FIGURE 5.2: Network Architecture for Learning Scene Representation: Hierarchical
SFA on (a) complete images and (b) landmarks. The system processes an image sequence
using a four-layer hierarchical SFA network. The two networks differ w.r.t preset param-
eters to deal with different image resolutions. The layer in a network consists of multiple
SFA nodes. Each node performs linear SFA for dimensionality reduction, followed by the
application of SFA on quadratically expanded inputs for slow feature extraction. The final
node in the last layer outputs an eight-dimensional feature vector, i.e., the slowest features

s1...8, which implicitly encodes the learned scene representation.

Layer RF size
(w×h)

Stride
(w×h)

Input
dim

Output
dim

1 12 × 12 6×6 144 12
2 5 × 3 2×3 180 14
3 6 × 3 3×1 252 16
4 1 ×1 1×1 240 8

TABLE 5.1: Network parameters for hierarchical SFA on complete images: Size of the
receptive field (RF size), stride (receptive field distances), and input-output dimensionality

of each node are given for all layers of the SFA network.

Layer RF size
(w×h)

Stride
(w×h)

Input
dim

Output
dim

1 10 × 10 5×5 100 12
2 5 × 5 2×2 300 12
3 4 × 4 2×2 192 12
4 1 ×1 1×1 192 8

TABLE 5.2: Network parameters for hierarchical SFA on landmark images.

its SFA outputs are computed for the complete training sequence and fed to the next
(n+ 1) layer as input training data. For computational efficiency, the system trains
a single node in each layer with stimuli from all node locations and replicates this
node throughout the layer (Franzius et al., 2007). This technique is similar to weight
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FIGURE 5.3: Learning Scene Representation using Fourier Pre-processed Images:
The input to the mapping module is the row-wise Fourier features of the training images.
In this case, the architecture comprises only a single SFA node and performs two steps
to extract slow features. The first step reduces the input dimensionality using linear SFA,
which computes the input-output functions as the weighted sum of the input data. The
second step extracts slow features by performing 2nd-degree polynomial expansion of the
input data. The output is an eight-dimensional feature vector, i.e., the slowest features s1...8,

representing the learned scene representation.

sharing in Neural Networks.

Learning Scene Representation using Fourier Features: In the case of Fourier pre-
processed images, the system first extracts the row-wise features discussed earlier
and then uses these features to learn spatial representation using SFA (fig. 5.3). Thus,
in this case, the input to the mapping module is Fourier features of the training images
instead of the pixel values. The inclusion of Fourier pre-processing omits the need for
a hierarchical SFA network due to low input dimensionality. It allows the processing
of the entire input using a single SFA node. Hence, the learning phase only consists
of two steps; the first applies linear SFA, and the second extract non-linear slow
features using a quadratic SFA. The input and output dimensionality for the first step
are 900 and 20, respectively. The input and output dimensionality for the second step
are 20 and 8, respectively. The eight SFA-output units s1...8 represent the slowest
features learned by SFA.

5.2 Localization Pipeline

The mapping pipeline introduced in the previous section learns localization relevant
scene representation by applying SFA on input images. The SFA approach generates
an implicit map (i.e., mapless representation) of the environment. After mapping
an environment, the computation step is instantaneous, i.e., the trained model only
requires a single test image to compute the SFA output. The left part (green) of the
localization pipeline (fig. 5.4) shows the procedure to obtain a test image’s output in
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FIGURE 5.4: Localization Pipeline: The pipeline shows the procedure to estimate a
robot’s position (x,y) from an input image. SFA-based localization is instantaneous, i.e.,
it only needs a single image to compute the model output. Therefore, it takes a test im-
age or features and uses the trained SFA model to localize it in the SFA space (left part).
Moreover, this representation space is also sufficient to perform 2D robot navigation. The
system uses the odometry data and learned SFA representation to compute a metric re-
gression function for quantifying the model performance in metric space (right part). The
last step in the pipeline applies the learned regression function on the SFA output of a test

image (i.e., localization in the SFA space) to obtain its 2D (x,y) position.

SFA space. The non-metric localization module uses a test image or features and
the trained model to perform localization in the slow feature space. In addition, this
representation is also sufficient for goal-directed navigation in the SFA space without
explicit path planning (c.f. chapter 9).
Although the generated SFA representation is sufficient for localization from single
images and 2D robot navigation in the same representation space, we must map this
representation into traditional metric (x,y) coordinates to compare it with other lo-
calization methods. The right part (red) of the localization pipeline (fig. 5.4) shows
how to obtain a test image’s output in metric coordinates (x,y) (i.e., metric localiza-
tion). This step is required only to assess the learned spatial representation in metric
space. The system projects SFA to the metric space using the learned SFA represen-
tation (mapping) and odometry (x,y) data. It trains a regression function that learns
to predict the x and y position of a robot from slow feature values. In the testing
(localization) phase, the system predicts the 2D position (x,y) for each test image by
applying the learned regression function on its SFA output.
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Chapter 6

Long-term Robust Localization

This chapter is based on the following peer-reviewed publications:

• Haris, M., Metka, B., Franzius, M., & Bauer-Wersing, U. (2017). Condition in-
variant visual localization using slow feature analysis. New Challenges in Neu-
ral Computation (NC2). Machine Learning Reports, Frank-Michael Schleif.

• Haris, M., Franzius, M., & Bauer-Wersing, U. (2019). Robust outdoor self-
localization in changing environments. In 2019 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS, pp. 714-719). IEEE.

Vision-based autonomous mobile robots operating for a long time have to deal with
changing environments, especially in outdoor scenarios. These changes may come
from different lighting conditions, weather, seasonal shifts, or structural change. A
drastic change in the environment directly affects a scene’s appearance; thus, a single
place might look completely different in changing conditions (fig. 6.1). This problem
poses a significant challenge for robots that aim to perform long-term visual localiza-
tion. This chapter introduces the proposed approach for learning invariance to such
changes for robust localization and presents the experimental results on simulated
and real-world long-term data.

FIGURE 6.1: Long-term Visual Localization 1: The same place can look very different,
depending on when it is observed.

1https://www.visuallocalization.net/
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Several authors have addressed the issue of changing conditions partially by focusing
only on illumination changes. The approaches include, for example, an active expo-
sure control method for visual odometry in high dynamic range environments (Zhang
et al., 2017), image transformation into lighting-invariant color space (McManus et
al., 2014), and visual feature point descriptors (Carlevaris-Bianco et al., 2014). In
(Churchill et al., 2013), the system does not build a single monolithic map represent-
ing all the observations of a workspace; instead, it creates a composite representation
from multiple runs in a workspace to capture the diversity of varying conditions. De-
spite the system’s performance, memory demand and map complexity increase over
time. The feature-finding algorithms (Valgren et al., 2010) are well known for per-
forming the task of place recognition but may fail to deal with extreme visual change.
Other methods (Sünderhauf et al., 2015) use features from pre-trained deep convolu-
tional neural networks for place recognition. Features extracted from different layers
are invariant w.r.t to viewpoint and condition changes. However, the computation
and matching of the high dimensional features are computationally expensive, which
may not suit real-time operation on a mobile robot. In (Kendall et al., 2017), the
authors have used PoseNet (Kendall et al., 2015), which is trained end-to-end to esti-
mate the camera’s six DOF pose from a single monocular image. However, it is also
computationally expensive and requires ground-truth positional data. State-of-the-art
structure-based methods perform well in generalizing to different viewpoints in sim-
ilar conditions (Sattler et al., 2019) but may ultimately fail in changing conditions
(e.g., weather, vegetation effects). On the other hand, learning-based approaches
can cope with long-term seasonal changes and outperform handcrafted features (Toft
et al., 2022) but require labeled data and high-end hardware (e.g., GPUs) for the
training phase.

6.1 Learning Invariance to Short-term Conditions

Unsupervised learning of scene representation with SFA allows visual localization
by processing the images captured during a training (mapping) phase. The variable
of interest for localization is the robot’s position. Suppose during training; it changes
on a slower time scale than other variables (for instance, the robot’s orientation and
environmental changes). In that case, the robot’s position will be the slowest feature
learned by SFA.
In a controlled setting with no environmental changes, the resulting SFA outputs en-
code the position or orientation of the robot depending on the movement statistics
during training (Franzius et al., 2007). However, it is rare to have fixed environmen-
tal conditions in real-world scenarios. If these changes occur on a slower or same
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time scale than the robot’s position, the resulting representation may encode them as
slowly varying features, which can prevent successful localization.
The work in (Metka et al., 2016) coped with short- and mid-term condition changes
occurring during the training phase. The proposed method uses a purely data-driven
approach and the SFA algorithm to learn the condition invariant representation of an
environment. The idea is to restructure the temporal order of the training sequence
based on loop closures in a trajectory (fig. 6.2). Images from loop closures represent
the same place in different conditions. Thus, whenever the robot revisits a place,
the current image is inserted next to the previously recorded image from the same
place in the training sequence. In the restructured training sequence, views of the
same place in different conditions thus appear temporally close. Hence, it serves as
a feedback signal, forcing the SFA model to produce similar outputs at similar loca-
tions due to its slowness objective. This technique thus changes the robot’s perceived
temporal input statistics, allowing learning an invariance to such changes. The exper-
iments (Metka et al., 2016) show learning invariance to the changes occurring during
the training phase using the restructuring method. However, using the loop closure
events from a single training run limits the usability of the learned representation
over a more extended time, i.e., it is valid only if the image statistics between the
training and testing phase are similar. The following section describes applying the
proposed approach to long-term recordings for robust localization.

FIGURE 6.2: Learning Invariance to Short-term Condition Changes: Figure shows
the mechanism to learn invariance to changing conditions during a single training run.
Each time stamp t represents an image collected by a robot while traversing a scene, and
images from loop closure represent the same place in different conditions. The approach
mitigates condition changes by restructuring the training sequence based on loop closure
events such that in the resulting sequence, the environment condition changes faster than
the robot’s position. This restructuring will enable SFA to learn invariance to scene changes
and encode only for the robot’s position as slowest features in the learned representation.
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6.2 Learning Invariance to Long-term Conditions

The goal here is to learn representations that encode the robot’s position regardless
of the scene changes occurring over a long time (e.g., a year). Thus, this section ex-
tends and applies the introduced restructuring scheme to long-term recordings from
the same trajectory. In each recording session, a robot automatically traverses a fixed
closed-loop trajectory to store images and odometry information. For restructur-
ing the long-term data, the system applies the nearest neighbor search algorithm to
the odometry data and establishes position correspondences between the recordings.
This association allows inserting images from the same position (x,y) in different
conditions into a training sequence before proceeding to the next position (x,y) in a
trajectory. In the resulting training sequence, the condition changes will vary faster
than the robot’s position. Hence, it will enable SFA to learn invariance to long-term
environmental conditions while encoding the robot’s position. Figure 6.3 illustrates
the organization of the training data.

(a)

(b)

FIGURE 6.3: Learning Invariance to Long-term Condition Changes: (a) Robot record-
ings in different conditions. (b) Restructuring Scheme. The training sequence includes
images from the same trajectory in different environmental conditions. The joining of
long-term recordings based on position (x,y) allows the creation of a training sequence
where environmental conditions change faster than the robot’s position (x,y), which will

enable SFA to learn invariance to such changes.
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6.3 Experimental Results

This section presents the experimental results of learning condition invariant visual
localization. The proposed method restructures the training data such that undesired
variables (e.g., conditions) vary faster than the desired ones (e.g., robot’s position)
over time. Please note that the method only reshuffles the training data for learn-
ing condition invariant representation. The procedure to learn scene representation
(mapping) and perform localization is the same as described in chapter 5. The used
datasets for the experiments include images from simulated and real-world outdoor
environments.

6.3.1 Experiments in Simulated Environments

The experiments were conducted in a simulated environment to verify previously de-
scribed concepts. The following sections investigate different scenarios w.r.t chang-
ing conditions and use specific image sets for each case.

Localization Performance on a Single Recording

This experiment tested the localization performance in a static environment using a
single recording. The training set has 279 panoramic images, which were used to
train the SFA network (i.e., hierarchical SFA on images). After the training phase,
the system retained the first eight slowest features (s1...8) as the learned represen-
tation. Since all the captured images are from the same environment, to train the
regression model for metric mapping, the localization module split the data into a
random train and test sets with a split size of 0.70 and 0.30, respectively. This split
set and the corresponding coordinates (x,y) are used to train the regression model.
The learned regression function is then used to predict the coordinates (x′,y′) of the
test set by applying the function to the SFA outputs of the test set. The localization
result has shown good performance as the mean Euclidean distance between the es-
timated (x′,y′) and ground-truth (x,y) coordinates is 0.08 meters. Figure 6.4 shows
the localization result.

Effect of Slowly Changing Light on Localization

In outdoor scenarios, variables like global illumination might vary on an equal or
slower time scale than the robot’s position. Such conditions may influence the learned
spatial representation and hence reduce localization accuracy. Thus, this experiment
aimed to test the impact of lighting changes on localization. For generating the train-
ing set, the intensity of the light source was increased such that it changes on a slower
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FIGURE 6.4: Localization in Static Conditions: The red dots show the training trajectory,
while the blue stars show the predicted test locations using SFA localization on complete
images. In a fully-controlled setting, it achieved nearly perfect localization, as expected.

time scale than the robot’s position during the training run (fig. 6.5). The test set is the
same as the previous experiment consisting of no lighting changes. After the learn-
ing phase, the system used the training set and its corresponding coordinates (x,y)
to train the regression function. The learned function was applied to the slow feature
values of the test set images to predict the corresponding spatial coordinates (x′,y′).
Figure 6.6 shows the localization result. The estimation reflects weaker encoding
of spatial information and a localization failure in the west area of the trajectory.
The mean Euclidean distance between the ground-truth (x,y) and estimated coordi-
nates (x′,y′) is 1.41 meters. Thus, the slowly changing light has indeed affected the
learned spatial SFA representation. However, the learned representation still encodes
some positional information since the estimated coordinates (x′,y′) are not entirely
random.

FIGURE 6.5: Slowly Changing Lighting Condition: First (Top) and last (Bottom) image
of the training sequence; the intensity of the light source was increased throughout the

training run such that it changes slowly than the robot’s position over time.
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FIGURE 6.6: Effect of Varying Lighting Conditions on Localization: Ground truth (red)
and estimated coordinates computed by SFA localization (blue). The change in light inten-
sity during the training run has deteriorated the learned spatial representation and resulted

in reduced localization performance.

The example presented above is one of the environmental changes which can oc-
cur during a training run. However, these changes can vary drastically over a long
time, ultimately affecting the localization performance. The following experiment
shows the application of the proposed restructuring scheme to deal with the prob-
lem. The approach combines data sets from multiple training runs collected over
different times based on their position correspondences. This causes environmental
conditions to vary faster than the robot’s position in the training data, enabling SFA
to learn invariance against them. For this experiment, the system joined both sets,
i.e., the static light set and the varying light set, to test the impact of the proposed
strategy. The learned representation significantly improved the localization accuracy
as the mean Euclidean distance between the ground-truth (x,y) and estimated coor-
dinates (x′,y′) is 0.17 meters (fig. 6.7). It is essential to consider that for long-term
robustness; we need more data sets with high variation w.r.t environmental condi-
tions so that SFA always codes for the robot’s position in the learned representation.

Influence of Dynamic Objects on Localization

This experiment tested another vital aspect of environmental condition changes. Since
natural scenes are always dynamic, this experiment tests the influence of such objects
on localization that were not present in the environment during training (mapping
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FIGURE 6.7: Localization with the Proposed Restructuring Scheme: Ground truth (red)
and estimated coordinates computed by SFA localization (blue). Joining the sets in dif-
ferent environments based on loop closures clearly facilitates the SFA algorithm to learn

invariance to changing environmental conditions.

phase). Thus, the generated test set for this experiment contains the model of a cow
placed in the scene. Figure 6.8 shows an image from the training and test set. The
cow’s place was kept fixed for the complete test run. Surprisingly, the static object
did not affect the learned representation, as the mean Euclidean distance between
the ground-truth (x,y) and estimated set (x′,y′) is 0.12 meters. Figure 6.9 shows the
localization result of this experiment.

FIGURE 6.8: Environmental Change w.r.t a Dynamic Object: An image from the train-
ing set (Top). A test image from the same scene with a cow model as a dynamic object

(Bottom).

As evident from the previous simulated experiments, the change in conditions in-
fluences the learned representation and thus affects the localization accuracy. The
following experiments show how we can use the long-term data sets and the pro-
posed strategy to learn representations invariant to changes occurring over a long
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FIGURE 6.9: Effect of a Dynamic Object on Localization: Ground truth (red) and esti-
mated coordinates computed by SFA localization (blue). The presence of a single dynamic

object does not seem to influence the localization performance.

time. Please note that the results are presented using the complete and Fourier pre-
processed images, and the proposed method in this chapter also works with the land-
mark images.

Learning Invariance to Long-term Environmental Changes

The data sets used for the simulated experiment consist of 10 recordings generated by
a random variation of lighting parameters. Each recording consists of 297 panoramic
images. Based on position correspondences, the system reordered the training se-
quence such that the environmental condition varied faster than the robot’s position,
as already discussed earlier. The SFA model is trained with an increasing number of
up to nine data sets and the performance is then tested on the successive set by com-
puting a regression function from the SFA outputs to ground-truth positions (x,y).
The same experimental procedure was repeated for 15 random permutations of the
image sets to validate the results. Figure 6.10 shows the mean localization perfor-
mance of the experiments, and figure 6.11 shows an estimated trajectory for the 10th
set using nine data sets for training. The mean Euclidean distance for the last test
set is 0.5 and 0.4 meters for hierarchical SFA on images and SFA on Fourier pre-
processed images, respectively. Using the representations learned in a single con-
dition has a prohibitively significant error in a different condition, but it decreases
quickly for more data sets. Thus, the results have shown that it is possible to learn an
increasingly invariant representation of the environment.
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FIGURE 6.10: Long-term Visual Localization in a Simulated Environment: Mean and
variance localization performance for 15 random permutations of 10 simulated recordings
for learning with raw images (Top) and Fourier pre-processed images (Bottom). Each
point indicates the localization error for the next unseen condition. Both plots show similar
characteristics, an increasingly invariant representation of the environment is possible to
learn by adding training sets, which have a high variation w.r.t environmental conditions.

FIGURE 6.11: The estimated trajectory for an unseen set (blue) using nine image sets with
a mean Euclidean error of 0.35 meters using the Fourier-based model.
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6.3.2 Experiments in a Real-world Environment

This section demonstrates the application of the proposed strategy to real-world out-
door data. The data set has 15 long-term recordings collected over an entire year,
i.e., 12 months. These recordings have environmental effects like different daytime,
weather, seasons, and dynamic obstacles. The proposed strategy requires combining
the long-term sets based on their nearest neighbor position correspondences. After
establishing the association, each data set consists of 799 panoramic images. Here,
the experiment procedure is the same as in the simulator environment. Figure 6.12
shows the mean localization performance of the experiments, and figure 6.13 shows
an estimated trajectory for the 15th set using 14 data sets for training. The mean
Euclidean error for the last test set is 0.7 and 1.1 meters for hierarchical SFA on
images and SFA on Fourier preprocessed images, respectively. As to be expected,
the use of a single training set is not sufficient to perform localization in a different
environment as the mean error is relatively high. However, adding successive data
sets to the training sequence quickly and noticeably reduces the error. Figure 6.14
visualizes the improvement in estimated trajectory as the model becomes invariant to
long-term changes over time.

FIGURE 6.12: Long-term Visual Localization in a Real-world Environment: Mean and
variance localization performance for 15 random permutations of 15 real-world recordings
for learning with raw images (Top) and Fourier-preprocessed images (Bottom). Each point
indicates the localization error for the next unseen condition. The resulting plots show a
decrease in localization error by adding the number of training sets with different condi-

tions.
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FIGURE 6.13: Estimated trajectory for an unseen set (blue) using 14 image sets with a
mean Euclidean error of 0.50 meter using the hierarchical SFA model.

FIGURE 6.14: Long-term Condition Invariant Learning Improves Localization: Fig-
ure shows the effect of learning environment invariant spatial representation on localiza-
tion. As expected, it is hard to generalize from one condition to a significantly different
condition (left). However, adding more diverse training data enables SFA to learn condi-
tion invariant representation and, as a result, allows a robot to robustly localize itself over

longer time (right).
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6.4 Conclusion

This chapter presented an approach to address the problem of localization in chang-
ing conditions. The proposed method reordered long-term data sets based on their
position correspondences such that environment conditions vary faster than the posi-
tion of the robot in the training sequence, allowing SFA to learn invariance to these
changes. Learning an invariance to such changes enables a robot to localize itself
robustly over a long period from single images. The learned representation was ob-
tained using raw and Fourier pre-processed images. However, the presented restruc-
turing scheme applies to landmark images as well. The Fourier pre-processing step
drastically reduces the computation time (c.f. table 6.1). A complete training session
with raw images takes 100 s on a standard CPU (Intel i5 – 6500 with 3.20GHz) ,
and localization from a single image takes 165 ms. With the Fourier-based approach,
the respective times are 2.85 s and 1.1 ms, which is a significant improvement. Sim-
ilarly, on an ARM processor (i.MX6 ARM board, single-core @800 MHz), the
localization from a raw image takes 2.85 s, and Fourier preprocessed image takes 20
ms. However, this improvement comes with a slight loss in localization accuracy as
the mean error for image-based learning is 0.7 meters and for Fourier-based learning
is 1.1 meters (c.f. long-term localization experiment, fig. 6.12).

Input to SFA
Training Time

Mapping
Execution Time

Localization
Raw Images 100s 165ms

Fourier pre-processed Images 2.85s 1.10ms

TABLE 6.1: Computation Times for Mapping and Localization on a standard CPU:
Using Fourier pre-processed images significantly reduces the computation time for learn-
ing scene representation and performing localization. Thus, it is well-suited for robots

equipped with low-cost embedded hardware.

The proposed method can cope with long-term instability from various sources (e.g.,
lighting, weather, and seasons) with a straightforward model independent of any
feature descriptors. Further, using Fourier representations allows one to do it very
efficiently. The experiments have shown that an agent can autonomously learn an
invariant representation of the environment. Although the appearance of an environ-
ment increasingly changes with seasons, localization accuracy improves over time.
Moreover, the efficient computation allows the implementation of the method even
on a resource-constrained robot.
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Chapter 7

SFA Localization on Landmark Views

This chapter is based on the following peer-reviewed publications:

• Haris, M., Franzius, M., Karanam, K. S. K., & Bauer-Wersing, U (2020). Vi-
sual Localization and Mapping with Hybrid SFA. Conference on Robot Learn-
ing (CORL), 2020. Proceedings of Machine Learning Research.

• Haris, M., Franzius, M., & Bauer-Wersing, U. (2022). Learning Visual Land-
marks for Localization with Minimal Supervision. 21st International Confer-
ence on Image Analysis and Processing (ICIAP, pp. 773-786).

• Haris, M., Franzius, M., & Bauer-Wersing, U. (2022). Physical Interactive Lo-
calization Learning. In IEEE International Conference on Advanced Robotics
and its Social Impacts (ARSO). IEEE

Instead of using complete images, an alternative is to perform visual localization rel-
ative to landmarks present in an environment. Landmarks are salient regions that
are easier to distinguish in a scene. This approach allows scaling the localization
method since each landmark gives an independent estimate of the robot’s location.
Thus combining several landmarks for localization can offer improved robustness
and accuracy compared to using complete images. Moreover, incorporating land-
marks into the mapping pipeline enables the generation of semantically meaningful
maps, allowing the robots to interact better with the world around them. Artificial
landmarks (fig. 7.1a), e.g., ArUCo markers (Garrido-Jurado et al., 2014), are the
fastest and easiest to recognize in images. However, it requires a human operator
to place such landmarks in a scene before the actual operation, which may not be
suitable for many real-world applications except in industrial settings. On the other
hand, natural landmarks (e.g., building corners, tree trunks) exist habitually in an
environment (fig. 7.1b), thus offering an attractive alternative to fiducial markers.
The landmark-based localization approach presented in this chapter employs natural
landmarks present in a scene.
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FIGURE 7.1: Landmarks: (a) Artificial Landmarks1: These landmarks are synthetic
markers made up of binary patterns that uniquely encode their id. The markers are straight-
forward to detect and distinguish in a scene. (b) Natural Landmarks: These landmarks

consist of objects or regions naturally present in a scene.

7.1 System Overview

This section presents a high-level overview of learning a scene representation using
landmark images. The difference to other image representations presented earlier
(i.e., raw pixels, Fourier features) is that we must first detect the landmarks present
in a scene before using them for the mapping and localization tasks. Thus, the system
uses deep-learning-based CNN (Convolutional Neural Network) detectors to recog-
nize landmarks in the images. These detectors outperform the performance of tra-
ditional computer vision algorithms for object detection. However, the following
two issues hinder directly using a pre-trained state-of-the-art detector like YOLOv3
(Redmon et al., 2018) for this task:

1. State-of-the-art CNN-based object detection algorithms (e.g., YOLO) are typ-
ically trained on MS-COCO objects (Lin et al., 2014). These objects are typi-
cally dynamic (e.g., cars, bicycles, persons) in an environment (fig. 7.2a). Lo-
calization relative to such objects would break if they are no longer present or
moved to another location in a scene. Thus, these objects can not be used as
stable landmarks for localization.

2. Even for the pre-trained stable object categories, such objects are not guaran-
teed to be present in the scene beforehand (fig. 7.2b).

Both these problems make it necessary to learn scene-specific landmarks for most
landmark-based localization approaches. Providing sufficient landmark detectors

1https://docs.opencv.org/4.x/markers.jpg
2https://zhanghanduo.github.io/post/yolo1/
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FIGURE 7.2: Pre-trained Objects as Landmarks: (a) Some pre-trained object categories
from the MS-COCO data set detected by YOLO-v32. These objects are dynamic and thus
can not be used as landmarks for localization. (b) Images from scenes that do not contain

any pre-trained objects.

a priori is challenging as suitable landmarks should be long-term detectable and
unique. Thus, the landmarks need to be learned on-site. Learning custom landmarks
requires labeled training data to fine-tune a pre-trained network (i.e., YOLOv3) or
learn a detector from scratch. Hand-labeling is the most prominent method to gen-
erate labeled training data, where a human manually annotates objects or regions of
interest in hundreds or thousands of images (fig. 7.3). However, this method is time-
consuming and costly; hence, it becomes infeasible for large-scale environments with
many landmarks.

FIGURE 7.3: Manual Labeling for Labeled Data Generation: This technique requires
a human to manually specify the objects or regions of interest in hundreds of images for

generating labeled training data.

To account for all the problems mentioned so far, the proposed pipeline for perform-
ing SFA localization on landmark views consists of the following two stages:

1. The first stage learns visual landmarks in a scene with a new proposed approach
that only requires minimal human intervention for generating labeled training
data.

2. The second stage uses the learned landmarks and performs localization relative
to them.
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The following sections of this chapter will explain the individual modules used to
perform SFA localization on landmark views. Afterwards, the chapter presents the
experimental results of landmarks-based localization using simulated and real-world
images.

7.2 Cooperative Landmark Learning

This section presents a novel approach that uses physical object instances with pre-
trained visual detectors (e.g., MS-COCO objects) as a labeling tool to learn new
stable landmarks for localization. For the sake of simplicity, the following text will
refer to objects or regions with pre-trained detectors as anchors and the derived ob-
jects or regions to be learned as landmarks. The idea is to place an anchor in spatial
relation to a landmark to teach the robot landmark recognition. Afterwards, the robot
collects views from varying perspectives, detects the anchor, infers the landmark
position from the anchor position, and generates the annotated image data for learn-
ing the new landmark (fig. 7.4). The benefits of the proposed approach are two-fold.
Firstly, it enables selecting long-term stable landmarks for localization, and secondly,
it allows efficient and fast generation of labeled training data compared to a cumber-
some hand-labeling process. Please note that, as mentioned earlier, the pre-trained
MS-COCO objects (i.e., anchors) are not suitable for long-term localization since
they are typically dynamic. Nevertheless, these objects can serve as mobile teaching
anchors for learning new landmarks in a scene.

7.2.1 Method Description

The core idea of the proposed method is to use physical objects in a scene with
pre-trained visual detectors as a labeling tool for learning new landmarks. It can be
achieved by using or placing such known objects in spatial relation (e.g., next to or
under) landmark instances that shall be learned to be detected. Fig. 7.4 shows the
steps to learn new landmarks for localization cooperatively with a human. Consider
our goal is to learn the painting on the wall as a new landmark. A human interactor
places the anchor (i.e., a bicycle) below it to teach the robot landmark recognition.
Please note that the anchor’s location in the scene remains fixed during the recording
phase. The robot now traverses in the environment to collect views from varying
perspectives and applies a pre-trained bicycle detector (i.e., YOLOv3, Redmon et
al., 2018) to detect its instance in the recorded images. The next step is to specify
the spatial relationship of the new landmark w.r.t anchor. At this step in the learn-
ing phase, minimal human supervision is necessary, i.e., a human now only needs to
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FIGURE 7.4: Cooperative Landmark Learning: A human puts a pre-trained anchor (i.e.,
a bicycle) in a scene to facilitate labeled data generation for learning a new landmark (i.e.,
painting). The robot then derives and collects imagery from different viewpoints. After-
wards, the system applies the pre-trained detector to recognize the bicycle in the images.
A human now specifies the spatial relationship of the new landmark (i.e., the top of the
bicycle) in a single image. Next, the system generates the labeled training data from all
available images where the bicycle is detected. Finally, the system uses the generated la-
beled data to train a CNN for landmark detection. The pipeline output is a custom landmark
detector that can be used for detecting the instance of this landmark in the images during

mapping and localization.

indicate the spatial relation of the bicycle relative to the landmark once to generate
labeled training data for this landmark from all recorded images. This relationship
is specified as the fixed 2D offset (i.e., above, below) in a single image to derive a
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landmark w.r.t an anchor. Thus, the method bootstraps the landmark learning pro-
cess and removes the need to manually label large amounts of data. The system then
uses the instances of the detected anchor and the specified offset to automatically
annotate the landmarks in the rest of the recorded images. If YOLOv3 fails to rec-
ognize the anchors in some images, the system runs an object tracker to obtain the
bounding boxes of anchors in the missing frames. The next step uses the generated
labeled data and trains a detector to recognize new landmarks. This step’s output
is a custom landmark detector, which the robot uses as an independent module for
the localization and mapping phases. This process can be repeated to learn more
landmarks. The anchor is no longer required after the landmark learning phase and
thus can be removed optionally from the scene. The basic implementation of this
approach learns one landmark per detected anchor. As an extension, it is possible to
scale the system to learn multiple landmarks per anchor, making it straightforward to
scale the system without increasing the number of anchors. A human has complete
control over the selection of new landmarks. Thus, landmarks can be made unique,
robustly detectable, and semantically meaningful, allowing task-relevant localization
accuracy in different regions and interactive learning in a playful way.

7.3 Localization Learning on Landmark Views

This section presents the steps to use the learned landmarks to extract the scene
representation and perform localization relative to them.

7.3.1 Acquiring Landmark Views

Figure 7.5 shows the steps to detect and extract landmark views. The input is an im-
age sequence obtained by the robot exploration phase in an environment. The system
then applies the learned detector from the previous step to recognize the landmark
in the collected images. Afterwards, the system resizes each landmark’s bounding
box to be the same size as the biggest bounding box in its category and rescales the
extracted image patch to 120×120 pixels. The output of this step generates an image
stream that contains landmark views. The procedure is the same for the images of
training (mapping) and test (localization) phases.

7.3.2 Mapping Phase

The mapping module learns the spatial representation of an environment relative to
each landmark. It uses the four-layer hierarchical SFA network, which has already
been described in chapter 5. The network learns scene encoding in an unsupervised
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FIGURE 7.5: Localization Learning on Landmark Views: The robot uses the learned
detector to identify the new landmarks in the images collected for the mapping and local-
ization phases. The next step extracts the landmarks from the images and resizes them to
a fixed size of 120 x 120 pixels. The robot then learns spatial representation relative to the
landmark and performs localization. If the localization accuracy is not sufficient, the robot
can improve the performance by learning multiple landmarks w.r.t to an anchor or can ask

a human to place new anchors in the regions where a higher performance is desired.
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learning process. This step’s output is the compact place representation (i.e., trained
SFA model) relative to each landmark.

7.3.3 Localization Phase

The localization module first obtains metric space representation by computing a
regression function from the learned spatial representation and odometry data (c.f.
5.2), i.e., the robot’s ground truth-position (x,y). This step is performed separately
for each landmark; hence, each landmark serves as an independent estimator of the
robot’s position (x,y).
Afterwards, the localization module uses the learned position estimators to obtain the
robot’s 2D position (x,y) relative to each landmark. Further, it estimates the robot’s
global 2D position (x,y) by combining each landmark’s position estimation using
weighted averaging. The system determines the weight of each landmark by taking
the inverse of its localization error. Suppose the robot detects that the localization
accuracy is insufficient to execute a task successfully. In that case, it can ask a human
to put a known object at some position so that it can learn new landmarks. Hence,
the proposed method allows to interactively learn new landmarks in a scene with a
human in the loop and scale localization accuracy according to the needs.

7.4 Experiments

This section presents experimental results from simulated and real-world outdoor en-
vironments. The system consists of two stages. The first stage learns new landmarks
in a scene using the proposed method. The system derives a single landmark for each
anchor present in a scene by setting a fixed 2D offset. Afterwards, it uses 500 labeled
images for each landmark and trains a detector to learn these landmarks. If the anchor
and the landmark are not within the same plane, a simple 2D offset will not capture
a semantic region but a subset of the scene’s viewing space. However, experimental
results suggest that these views can be classified with a CNN, and thus no degrada-
tion of localization accuracy on such views is expected. The second stage uses the
learned landmarks to perform localization relative to them. This stage proves that the
learned landmarks in the first stage are well suited for the localization task. In addi-
tion to learned landmarks, the section provides localization accuracy obtained with
PoseNet (Kendall et al., 2017) and SFA localization on Fourier pre-processed images
for baseline comparison. PoseNet is an end-to-end learning-based visual localization
method that directly regresses an image’s pose (i.e., position and orientation) from
individual images. Like SFA, PoseNet also has an offline learning phase (mapping)
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that allows a straightforward comparison. To obtain PoseNet results, the system used
25% of the data (subsampled from the training set, i.e., every 4th image) for valida-
tion and the remaining to train the network. Median accuracy is used for comparison
to remove the effect of outlier position estimates (x,y) obtained with the baseline
method (i.e., PoseNet).

7.4.1 Simulated Experiments

The experiments were performed in a simulated garden with an area of 18×18 me-
ters. A robot randomly traverses the area to record images for the training set and
then samples a regular grid to collect the test set. The training and test trajectory
consists of 15000 and 1250 panoramic images, respectively. The virtual environ-
ment consists of three different CNN-detectable anchors (i.e., a bicycle, a car, and an
umbrella). The system then learns one landmark relative to each anchor by training a
CNN. After training, the learned landmarks achieved nearly perfect recognition rates
(c.f. table 7.1). The system then uses the landmarks to perform localization. Ta-
ble 7.1 reports the median localization performance w.r.t landmarks and the baseline
methods. The combination of landmarks achieves better localization accuracy than
the baseline methods in this experiment.

Landmark-based Localization
Fourier-SFA PoseNet

Id_1 Id_2 Id_3 Combined %

0.18m [99 %] 0.27m [99 %] 0.27m [97 %] 0.16m 100 0.26m 0.21m

TABLE 7.1: Localization Results on Simulated Data: Median localization performance
w.r.t learned landmarks and the baseline methods. The table further reports detection rates
of the learned landmarks. The combined detection rate of 100% indicates that at least a
single landmark is present at any given test location. Localization w.r.t learned landmarks

outperforms the baseline methods in this experiment.

7.4.2 Real-world Experiments

The real-world experiments were performed in a small- and large-scale garden-like
environment. The small garden work area is 88m2, while the big garden work area
is 494m2. During recordings, an autonomous robot traverses a fixed closed-loop tra-
jectory in both environments (fig. 7.6a) to record the imagery for the experiments.
The procedure for collecting the recordings and post-processing has already been
described in chapter 4. The collected datasets consist of three recordings from each
garden that vary w.r.t daytime, lighting conditions, and dynamic scene changes.
Learning spatial representation relative to landmarks in a scene requires training a
detector to recognize the landmarks. Therefore, the system first generates the labeled
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training data using the fixed 2D offset between the anchor and the landmark. Fig-
ure 7.6b shows an example of the anchor (i.e., a suitcase) and the learned landmark
(i.e., an electrical cabinet) present in one of the outdoor environments. Afterwards, it
uses the labeled data and fine-tunes YOLOv3 (Redmon et al., 2018) for this task us-
ing one of its implementations (Muehlemann, 2019). Please note that the images used
for fine-tuning the network belong to separate recordings, i.e., these recordings were
not used for mapping and localization phases. After fine-tuning, the system used
the detector as an independent module for detecting the landmarks in images. Fig-
ure 7.6c shows some learned landmarks from outdoor environments, and figure 7.7
visualizes the detections in one of the recordings from both gardens. After the land-
mark learning phase, the next step includes learning scene representation (mapping)
and performing localization relative to the learned landmarks. The following sub-
sections present the experimental results obtained with small- and large-scale garden
datasets.

FIGURE 7.6: Experimental Setup: (a) shows the robot’s traversed trajectory in small-
scale and large-scale environments. (b) shows an example of a pre-trained anchor (i.e.,
a suitcase) and a derived landmark (i.e., an electrical cabinet) relative to the anchor in a
real-world environment. (c) shows some scene-specific objects (e.g., hut) or regions (e.g.,

building corner, garden entrance) learned as natural landmarks.

Small-scale Garden

The training and test sets include images from a similar robot trajectory (fig. 7.6a) but
in different environmental conditions (i.e., daytime, weather, and dynamic objects).
The system used one recording to learn the scene representation and the other two
to evaluate the localization performance. The training set consists of 1138 images,
while the two test sets have 1091 and 1109 images. The first test set has more similar
conditions w.r.t the training set, while the second set has more different illumination
conditions and dynamic objects. The small garden consists of three learned land-
marks, which the system used to perform landmark-based mapping and localization.
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(a) Small Garden

(b) Big Garden

FIGURE 7.7: Landmark Detection: (a) and (b) visualize landmark detection in one of the
recordings from small- and large-scale environments, respectively. The small garden has
three landmarks, while the big garden contains four landmarks. Due to the smaller area, the
learned landmarks are detectable in almost all images from the small garden. In contrast,
most of the time, only a single landmark is detectable in a specific part of the big garden.

FIGURE 7.8: Scene Variation due to Dynamic Objects: Example images from the train-
ing set (a) and a test set (b) from the small and big gardens. Images show scene variation
caused by a dynamic object. For the second example, the dynamic object mostly occludes

the learned landmark in the scene.
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After training PoseNet, it achieved a localization accuracy of 0.06m on the validation
set. Table 7.2 shows the detection rates and the median localization accuracy w.r.t
to the learned landmarks and the baseline methods. The use of a single landmark
enables coarse localization in the environment. The localization accuracy of individ-
ual landmarks significantly drops for the second test set mainly due to the dynamic
objects that were not present in the training set (fig. 7.8). Although the trained de-
tector recognizes the landmarks with partial occlusions, scene variation affects the
learned spatial representation and thus results in reduced localization performance.
In the case of a full occluded landmark, the robot must rely on other landmarks in a
scene. On the other hand, the combination of landmarks achieves similar or higher
accuracy than the baseline methods on the test sets. Figure 7.10 visualizes the in-
fluence of adding more landmarks in a scene on localization for one of the test sets.
Fourier-SFA and PoseNet produce good localization results when the environmen-
tal condition between the training and the test sets is almost identical (e.g., the first
dataset from the small garden). However, the results degrade for the second test set.

Test

Set

Landmark-based Localization
Fourier-SFA PoseNet

Id_1 Id_2 Id_3 Combined %

1 0.26m [99 %] 0.31m [99 %] 0.60m [99 %] 0.20m 100 0.19m 0.18m

2 0.73m [99 %] 0.93m [97 %] 1.33m [99 %] 0.75m 100 1.01m 0.83m

TABLE 7.2: Real-world Small-scale Localization: Median localization performance w.r.t
learned landmarks and the baseline methods. The learned landmarks achieved nearly per-
fect detection rates, and no false positives were detected. The individual landmarks en-
able coarse scene localization while their combination performs similarly or better than the
baseline methods. Please refer to the fig. 7.9 for the error distribution of both test sets for

learned landmarks and baseline methods.

FIGURE 7.9: Error Distribution (Small Garden): (a) and (b) show the error distribution
of the two test sets for localization on learned landmarks (combined), Fourier-SFA, and

PoseNet.
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FIGURE 7.10: Influence of Landmarks on Localization: A human interactor iteratively
adds new anchors to a scene. The robot learns the landmarks relative to the placed anchors
for the localization task. Using a single landmark gives a rough estimate of the robot’s po-
sition (left), while adding more landmarks provides the precise location estimation (right).
Hence, the robot can cooperatively scale the system to achieve task-dependent localization

accuracy.

Large-scale Garden

Like the small garden experiments, the system used one recording for learning the
spatial representation and two separate sets for evaluation. However, one of the main
differences is that this garden is much bigger and more complex than the small gar-
den. Moreover, the learned landmarks are visible only in specific parts of the garden;
thus, localization w.r.t only one landmark is possible for the most part. The number
of training set images for the big garden is 4336, while the two test sets consist of
4032 and 4050 images. After training, PoseNet’s localization accuracy on the vali-
dation data is 0.41m. Table 7.3 shows the localization results based on four learned
landmarks, their combination, and the baseline methods. The results obtained with
individual landmarks enable coarse localization in an environment. Nevertheless,
their combination achieves better localization accuracy than the baseline methods.
This effect, however, is more pronounced for the more challenging second test set
from the big garden. Fourier-SFA does well on the datasets from the small garden.
However, it does not scale to this environment. Similarly, PoseNet localization ac-
curacy significantly drops on the test sets from the big garden. To conclude, the
proposed landmark-based approach enables large-scale visual localization.

7.4.3 Scaling Experiments

This experiment aims to analyze the effect of increasing the number of landmarks on
localization using simulated and real-world data from both gardens. The system used
up to ten derived landmarks using the anchors present in a scene. The first step is
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Test

Set

Landmark-based Localization
Fourier-SFA PoseNet

Id_1 Id_2 Id_3 Id_4 Combined %

1 1.74m [32 %] 2.44m [16 %] 1.46m [13 %] 3.54m [25 %] 2.22m 78 7.50m 2.99m

2 2.06m [32 %] 2.97m [17 %] 1.83m [13 %] 3.80m [28 %] 2.57m 80 8.22m 6.57m

TABLE 7.3: Real-world Large-scale Localization: Median localization performance w.r.t
learned landmarks and the baseline methods. The drop in the detection rates is due to the
landmark visibility in a specific part of the scene. Please note that the system only used
test images for the baseline methods, where at least a single landmark view was available
in the corresponding image. Individual landmarks enable coarse localization while their
combination outperforms the baseline methods. Please refer to the fig. 7.11 for the error

distribution of both test sets for learned landmarks and baseline methods.

FIGURE 7.11: Error Distribution (Big Garden): (a) and (b) show the error distribution
of the two test sets for localization on learned landmarks (combined), Fourier-SFA, and

PoseNet.

to learn an independent position estimator for each landmark. The second step pro-
cesses landmark images from the test set using the estimators and predict the robot’s
2D position (x,y). Afterwards, the final step calculates the test set’s median local-
ization error by systematically increasing the number of landmarks. Fig. 7.12 shows
the results of 50 random permutations of the ten landmarks for both simulated and
real-world data. The plots show an improved localization performance by increasing
the number of landmarks until it saturates as expected. From an application perspec-
tive, a robot could increase the number of landmarks to achieve a certain accuracy
level at runtime, depending on the area where high accuracy is required. A slight
drawback is that since the system trains a separate SFA network for each landmark,
the processing time will linearly increase (i.e., O(n)) with the number of landmarks.
However, SFA-based mapping and localization are computationally inexpensive due
to unsupervised learning. Hence, the system can scale from low computational cost
and localization accuracy to higher accuracy at a modestly higher computational cost.
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(a) Simulated data

(b) Small Garden

(c) Big Garden

FIGURE 7.12: Scaling Experiments: Simulated data (a). Real-world data (b,c). The plot
shows the median and variance localization accuracy for 50 random permutations of the
ten landmarks. Using more landmarks for localization improves the accuracy initially, and

eventually, it saturates for a higher number of landmarks.
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7.5 Discussion

This chapter introduced a novel approach to speed up the label generation process
for learning new visual landmarks in a scene. The method uses physical instances of
pre-trained CNN objects as anchors to generate labeled data for the unseen imagery.
Pre-trained detectors like MS-COCO are mainly available for everyday manufac-
tured mobile objects, which makes them unsuitable as landmarks. The proposed
approach turns this disadvantage into an advantage since typical mobile objects (e.g.,
a bicycle) can be easily acquired and placed temporarily as anchors. Therefore, a
human only needs to place an anchor in the scene and specify its spatial relationship
to a new landmark once instead of potentially hand-labeling thousands of images.
Please note that a human is not strictly required to suggest new landmarks but to
provide a temporarily stable and unique training anchor object. However, a human’s
common sense knowledge can help select landmarks that will be stable and unique
over time (e.g., manufactured objects rather than vegetation to not change too much
with changing seasons). Afterwards, the system automatically generates the labeled
data and trains a detector to learn the landmarks. Most machine-learning approaches
work on pre-recorded labeled image data, whereas the proposed approach requires
physical interaction on-site with the robot.
After the landmark learning phase, the system used landmark views to perform local-
ization experiments. The results show that landmark-based localization significantly
outperforms the baseline methods in a large-scale environment and achieves similar
results in a small-scale environment. In the large-scale environment, scene variations
during training affect the learning of spatial representation with SFA on complete
images. However, focusing on smaller image parts (i.e., landmarks) helps to reduce
such effects and thus achieve higher localization accuracy. The occlusions produced
by dynamic objects affect the localization performance based on individual land-
marks. However, the method’s performance can be further improved by integrating
more landmarks and obtaining a combined position estimation relative to them. A
difference from classic landmark-based localization approaches, for example, trian-
gulation, is that the proposed method enables localization from a single landmark.
In contrast, triangulation requires the simultaneous detection of at least three land-
marks with a known position. The landmark-based localization here uses SFA as
an efficient unsupervised feature learning step. However, the cooperative landmark
learning approach may also improve standard supervised pose regression methods
like PoseNet.
The labeling approach allows learning actual semantic objects as new landmarks.
When anchor and landmark are within the same plane, perspective changes during
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recording result in labeling the identical scene part as a landmark in the training
paradigm with a fixed 2D offset between anchor and landmark. In the most extreme
case, if an anchor is placed such that the robot can go around it, a simple 2D ap-
proach may fail and not capture a semantically meaningful region but a subset of
the scene’s viewing space. Geometry-based localization methods may fail in such a
case. However, unintuitively, these views are classified very well as a landmark with
a CNN and thus have no influence on localization accuracy obtained with position
regression learning (as shown here with SFA). Hence, the new landmark may not
necessarily contain complete objects; it can be a non-object patch due to perspective
effects. As long as the patch is informative (e.g., not a part of the sky), the results
show that localization learning performs well on such landmarks. From an appli-
cation perspective, the system is suitable for service robots (e.g., lawnmowers and
vacuum cleaners), employing a pre-trained visual detector to learn new landmarks in
a scene. Thus, the approach enables reliable localization in the long term, even if the
anchor objects are no longer present in the scene. In summary, the following are the
main advantages of the methods introduced in this chapter:

1. The proposed landmark-learning approach enables efficient and fast genera-
tion of labeled training data that only requires minimal human intervention in
contrast to tedious hand-labeling.

2. Localization relative to learned landmarks in a scene allows large-scale local-
ization, an essential aspect of any localization approach.

3. Incorporating multiple landmarks improves the localization accuracy and thus
allows to adjust it according to the needs.

However, a slight disadvantage is that the introduction of landmark learning in the
SFA-based localization pipeline makes the approach computationally more expen-
sive than SFA on raw pixels or Fourier Features since it requires a GPU to learn
and detect the landmarks in images. The following section presents an alternative
approach for performing localization independent of any pre-fixed visual landmarks.

7.6 Visual Localization using Generic Landmarks

The idea is to remove the dependency on learning pre-fixed visual landmarks for
localization by implementing a generic system that learns to localize from an image
patch, i.e., a small group of nearby image pixels (fig. 7.13). To this end, the system
uses SFA to encode the robot’s position (x,y) as the slowest feature in the learned
representation. Here, the proposal is to exploit the slowness property of SFA to
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encode the robot’s gaze point in the scene as the slowest feature by changing the
training data statistics. The resulting representation will smoothly encode the spatial
relationship of gaze points and, consequently, be used to regress a robot’s 2D-position
(x,y) from an image patch without costly deep learning.

FIGURE 7.13: Generic Landmark-based Localization: The aim of anywhere localiza-
tion is to use any image patch to estimate the robot’s position (x,y) instead of pre-fixed
landmarks in a scene. Just like landmarks, these individual patches (i.e., generic land-

marks) will give an independent estimate of the robot’s position (x,y).

7.6.1 Proposed Method

The core idea here is to encode a robot’s gaze as a slowly varying feature by changing
the input statistics of the training data. Figure 7.14 shows the procedure of generat-
ing a training sequence in which a robot’s gaze changes slowly over time compared
to other variables, for instance, a robot’s position (x,y). The robot fixates its viewing
direction on a region in the scene. It now starts traversing the scene while focusing on
the fixated region for the complete trajectory. After returning to the starting position
(x,y), it shifts its gaze to a neighboring region in the scene and continues traversing.
The robot repeats this process until ideally whole image space has been considered.
The application of SFA on such data will smoothly encode the spatial relationship
between the gaze points as nearby regions will get similar slow feature values due to
SFA’s slowness objective. The learned representation can be later projected to met-
ric space (x,y) by learning a regression function similar to the previous approaches.
Hence, the approach estimates the 2D robot position (x,y) from any image patch,
irrespective of any learned landmarks with a CNN.
From the implementation point of view, the desired sequence can be easily gener-
ated by incorporating a visual tracker in the SFA localization pipeline. Generally, the
tracking algorithms are faster than the detection algorithms, which makes them suit-
able for many real-world applications. Hence, the straightforward approach is to use
an available visual tracker from OpenCV 3 to generate the desired training sequence,
as mentioned earlier. However, some challenges prevented the use of such trackers
in this work. The primary reason is that the OpenCV trackers drift a lot as the robot
moves, making it harder to generate the desired training sequence for encoding the

3https://docs.opencv.org/



7.6. Visual Localization using Generic Landmarks 73

robot gaze. In addition, the application environment consists of many similar things
(i.e., brick walls and bushes). Such trackers latch on to nearby regions and do not
return to their initial location in the image. All these issues make it challenging to
generate the desired training sequence. Since the development of a reliable tracker
is beyond the scope of this thesis, the following section presents the experimental
results from the prototype implementation of the proposed method, where the aim is
to simulate a perfect tracker and analyze the localization results.

FIGURE 7.14: Training Sequence Generation for Encoding Robot’s Gaze: The robot
starts with tracking a fixated region for some time (here: for a fixed trajectory). Afterwards,
it switches the viewing region to the adjacent location and continues traversal. It repeats
the procedures to cover the entire scene. The application of SFA on the resulting train-
ing sequence should ideally encode the robot’s gaze as the slowest feature in the learned

representation.

7.6.2 Experimental Results

The prototype version of the approach tracks a single region in the scene and gen-
erates artificial trackers relative to it using a simple 1D offset. Figure 7.15a shows
the tracked region in the image sequence and the generated trackers from its position
in the image. For the proof of concept, the system did not track the entire scene;
instead, it uses a subset of the scene’s viewing space. Afterwards, the system starts
with the left-most tracker (as indicated in the figure) and shifts the attention region
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towards the right to generate the desired training data. Later, this data is fed to a
hierarchical SFA network to encode the spatial relationship between the robot’s gaze
points. After learning the representation, the system projects the learned SFA space
representation to the metric space by learning a regression function. During the test
phase, the system randomly takes an image region (fig. 7.15b) and estimates the
robot’s position (x,y) using it. Please note that the figure only shows a single region.
However, it is possible to use multiple regions at the test time and combine their es-
timation for higher localization accuracy. Figure 7.16 shows the localization results
obtained from the proposed approach and learned landmarks as the baseline method.
The median localization accuracy using three generic landmarks is 0.17m, while the
accuracy is 0.20m using the three learned landmarks. Thus, the results demonstrate
that the proposed method is a viable alternative to learning pre-fixed landmarks for
localization. The future direction would be to investigate incorporating advanced
context-aware trackers (Mueller et al., 2017) in the pipeline and generate the training
data as discussed.

7.7 Conclusion

This chapter introduced a new SFA-localization approach incorporating visual land-
marks into the localization pipeline. Compared to the cumbersome hand-labeling
method, the cooperative landmark learning approach allows efficient and fast gen-
eration of labeled training data for learning new landmarks in a scene. The ex-
perimental results show that the learned landmarks are well-suited for localization
and achieve higher accuracy than the baseline methods in a large-scale environment.
Moreover, combining multiple landmarks for localization further improves the accu-
racy. Hence, the system enables scaling the localization accuracy according to the
needs. The chapter also presented an alternative approach that encodes the robot’s
gaze instead of its position in the learned representation as slowly varying features.
This approach allows a robot to localize from any image patch (i.e., generic land-
marks) in contrast to learning pre-fixed landmarks with a CNN. However, due to the
visual tracking issues, the approach is currently limited to its prototype version. The
prototype implementation shows promising localization results. Hence, the future
work is to use some stable tracker and learn gaze representation for the entire scene,
allowing a robot to localize from looking anywhere in the scene.
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(a) Training Phase

(b) Testing Phase

FIGURE 7.15: Prototype Implementation: (a) shows the steps to generate training data
for implementing the prototype version of the approach. The system tracks a single region
using an OpenCV tracker and drives artificial trackers relative to the tracked area. The
system then extracts the tracked regions from left to the right and feeds them to the SFA
network for training. (b) The localization phase uses a random region (here: from a subset

of the scene’s viewing space) and estimates the robot’s location (x,y).

FIGURE 7.16: Localization Result: (a) and (b) show the estimated trajectory using three
generic and learned landmarks. (c) shows the error distribution for both approaches.
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Chapter 8

Fast Visual Localization and Mapping
with Slow Features

This chapter is based on the following peer-reviewed publication:

• Haris, M., Franzius, M., & Bauer-Wersing, U. (2021). Unsupervised Fast Vi-
sual Localization and Mapping with Slow Features. In IEEE International Con-
ference on Image Processing (ICIP, pp. 519-523). IEEE

Visual localization is the task of accurately estimating the camera’s position in a
known environment. State-of-the-art structure-based methods (Sattler et al., 2012;
Sattler et al., 2017) are well-known for precise, fast, and generalizable visual lo-
calization approaches. They are based on the laws of projective geometry and the
underlying 3D structure of a scene. In contrast, training convolution neural networks
(CNNs) for visual localization has recently gained significant interest. These meth-
ods (e.g., Kendall et al., 2017) train a neural network in an end-to-end way to directly
predict the pose of an image. This chapter systematically compares SFA-based lo-
calization with Active Search (i.e., a structure-based method) and PoseNet (i.e., an
end-to-end learning-based approach) in real-world test scenarios w.r.t localization
accuracy and computation time.
Active Search (Sattler et al., 2012) is one of the fastest and most widely used structure-
based localization methods, which estimates the pose of a test image relative to a
pre-computed 3D scene reconstruction. It proposes a faster pipeline that combines
2D-to-3D and 3D-to-2D search into an active correspondence search step, which al-
lows the method to achieve similar or higher registration performance compared to
tree-based search and results in faster run times. Moreover, it achieves comparable or
superior localization performance in small- and large-scale environments compared
to various localization methods (Sattler et al., 2017; Sattler et al., 2019). Similar
to SFA-based localization, both Active Search and PoseNet have non-simultaneous
mapping and localization phases, making it possible to compare the methods in a
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straightforward and meaningful way.
The experiments first test the methods on subsequent robot recordings along the
same path (i.e., temporal generalization) and then for the case when the train and
test recordings consist of sufficiently different robot trajectories (i.e., spatial gen-
eralization). The performance metrics are localization accuracy and computation
time measured separately for mapping (training) and localization (test) phases. In
summary, this chapter’s motivation is two-fold: First, to show through real-world
experiments if an unsupervised learning approach can compete with the baseline ap-
proaches w.r.t localization accuracy. Second, to compare the methods, w.r.t run-time,
and hardware requirements in the mapping and localization phase, respectively.

8.1 Structure-based Localization

Active Search determines the pose of a test image relative to an offline built 3D-point
cloud reconstruction of a scene. The available implementation1 of Active Search ex-
pects the input (3D reconstruction) in the Bundler2 file format. However, Bundler
uses a relatively simple pinhole camera model and cannot handle more sophisticated
camera models, for instance, fisheye lenses. Due to this limitation, the system re-
duced the field of view (FoV) of fisheye images to 90° and computed the 3D scene
reconstruction with COLMAP’s (Schönberger et al., 2016) pinhole camera model.
Despite the reduced FoV, the remaining image content was sufficient to generate an
excellent 3D point cloud of the scene with the proposed approach (fig. 8.1). After-
wards, the system registered the 3D model against the odometry information obtained
during the recording to recover the model’s scale. The final step was to export the
COLMAP’s output based on a pinhole model to the Bundler format as required by
Active Search. In the localization phase, the system also reduces the FoV of test
images to 90°. Please note that the system did not use test images while computing
the 3D scene reconstruction to prevent their influence on the final model. The local-
ization phase uses the 3D model and the Active Search pipeline (Sattler et al., 2012)
to estimate the pose of the test images.

8.2 Experiments

The experiments were performed using the datasets collected from an outdoor envi-
ronment with an area of 15×9 meters. An autonomous robot traverses the area’s bor-
der (i.e., first working phase) and then traverses freely (i.e., second working phase) to

1https://github.com/hanjianwei/ACG-Localizer
2http://www.cs.cornell.edu/ snavely/bundler/
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FIGURE 8.1: 3D Scene Reconstruction: A sparse scene reconstruction was computed
with COLMAP’s structure-from-motion (SfM) pipeline (Schönberger et al., 2016). The
image dataset contains an ordered sequence of 1083 images collected by a fisheye lens

mounted on a robot.

store scene images. The robot captures omnidirectional images of size 2880×2880
pixels. Due to the issue mentioned earlier regarding the baseline method, an initial
pre-processing step reduces the field of view (FoV) of all collected images to 90°.
The size of each image with the reduced FoV is 1440× 1440 pixels. Please note
that this additional pre-processing step is only done for the experiments presented in
this chapter. Figure 8.2 shows the robot’s traversed trajectories during a recording
session and some example images with reduced FoV.

FIGURE 8.2: Experimental Setup: (a) First working period (red): robot follows the border
wire; second working period (blue): robot traverses freely within the area enclosed by the

wire. (b) shows some example images from the data sets used for the experiments.
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For the SFA part, the system projects the input images with dimensions 1440×1440
to panoramic views of size 600× 60. The later steps involve Fourier feature ex-
traction from the views and using these features to learn SFA representation. Af-
ter the training phase, the next step uses the trained model and the training data to
compute the eight slowest features s1...8 for each position (x,y). The system then
uses the learned slow features and trains a separate regression function for x and y

metric ground-truth positions to evaluate metric performance. Similarly, the final
step computes the test data’s slow features and uses the learned regression function
to predict test set locations (x′,y′). The procedure for obtaining 3D scene recon-
struction for Active Search has already been described in section 8.1. During the
localization phase, the system extracts SIFT features (Lowe, 2004) of the test images
using COLMAP3 and runs the Active Search pipeline to estimate the pose for each
test image. For obtaining PoseNet results, the system unwraps 90° omnidirectional
views to 1200× 200 pixels and then learns to regress the image pose by training a
neural network in an end-to-end fashion (Kendall et al., 2017). For all the methods,
the system computes Euclidean distance between estimated locations (x′,y′) and the
ground-truth test set locations (x,y). The experiments include testing localization
methods in two different scenarios, i.e., short-term temporal generalization and spa-
tial generalization w.r.t localization accuracy and computation time.

8.3 Results

8.3.1 Short-term Temporal Generalization

This experiment aims to test the re-localization ability of the methods over a short
time. The training and test set images were recorded on a similar trajectory but over
a time difference of 30 minutes, causing a slight variation in lighting conditions. The
training and test sets consist of 1083 and 284 images, respectively. Table 8.1 reports
both median and mean localization accuracy, and fig. 8.3 visualizes the localization
error for the methods. Active Search performed better in this experiment than SFA-
based and PoseNet localization.

8.3.2 Spatial Generalization

This experiment aims to test the methods’ re-localization ability when the train and
test sets contain images from significantly different robot trajectories but in similar

3https://colmap.github.io/
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Method Median [m] Mean [m]
Quartiles [m]
3rd 4th

SFA 0.48m 0.63m 0.78m 5.03m

Active Search 0.28m 0.42m 0.51m 5.82m

PoseNet 0.42m 0.66m 0.93m 3.79m

TABLE 8.1: Localization Results for Temporal Generalization: Median and Mean Eu-
clidean error of the localization methods for generalization over time. Active Search out-
performed both SFA and PoseNet localization in this experiment. For detailed information

on error distribution, please refer to fig. 8.4.

FIGURE 8.3: Visualization of Localization Results (Temporal Generalization): The
robot follows a similar trajectory (border wire) twice to collect images for the training and
test set. The time difference between the two recordings is 30 minutes. (a-c) visualizes
the localization error as indicated by the color codes for all the methods. Pink triangles
indicate the positions where the estimated error is higher than three meters. Active Search

has achieved better median and mean localization accuracy than other methods.

conditions. Therefore, the system uses images captured by the robot from the bor-
der and inner field positions as training and test data (fig. 8.2a). The training and
test sets consist of 1141 and 298 images, respectively. The ground-truth data (x,y)
for the open field was obtained using commercial photogrammetry software, i.e.,
Metashape, as discussed in chapter 4. Table 8.2 reports both median and mean local-
ization accuracy, and fig. 8.5 visualizes the localization error of the methods. Active
Search has achieved better median localization accuracy than SFA and PoseNet local-
ization. However, when comparing the mean accuracy, SFA has shown better results.
The mean localization error for SFA is 1.04m, while the error is 2.52m and 1.95m
for Active Search and PoseNet, respectively. It is because almost 20% of the position
estimates (out of n = 298) produced by Active Search and PoseNet have localization
errors greater than three meters, especially in the center of the traversed area (c.f.
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FIGURE 8.4: Error Distribution (Temporal Generalization): It shows the error distribu-
tion (n = 284) of the test set for localization using SFA, Active Search, and PoseNet.

fig. 8.5). Moreover, Active search is prone to outliers and thus produces some ex-
treme ones (c.f. tab. 8.2). On the other hand, only 3% of estimates have localization
errors greater than three meters for SFA-based approach. Thus, the SFA localiza-
tion produced slightly more robust results than the baseline methods in the case of
spatial generalization. This performance can be significantly improved by adding
some sparse images to the training sequence from the infield locations. Please note
that for SFA, this step is highly feasible since it does not require any labeled data to
learn scene representation in contrast to any end-to-end learning-based approach like
PoseNet. Moreover, the results obtained with PoseNet for this experiment also align
with the work (Sattler et al., 2019), where the authors show that end-to-end learning
does not necessarily generalize beyond the training set data.

Method Median [m] Mean [m]
Quartiles [m]
3rd 4th

SFA 0.72m 1.04m 1.41m 10.37m

Active Search 0.38m 2.52m 1.81m 94.65m

PoseNet 1.65m 1.95m 2.82m 7.32m

TABLE 8.2: Localization Results for Spatial Generalization: Median and Mean Eu-
clidean error of the localization methods for generalization over space. For detailed infor-

mation on error distribution, please refer to fig. 8.6.
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FIGURE 8.5: Visualization of Localization Results (Spatial Generalization): The robot
follows the border wire (solid line) to collect the training set images and freely traverses
within the border wire area (dashed line) to collect test set images. (a-c) visualizes the lo-
calization error of the methods as indicated by the color codes. SFA performs well in spa-
tial generalization and moderately degrades for test images towards the center of the field.
Active Search has achieved better median localization accuracy than SFA and PoseNet lo-
calization, but it is worse in the mean performance. As expected, Active Search has quite
good estimations near the border wire, but it degrades for the test images from the center of
the field. Pink triangles indicate the positions where the estimated error is higher than three
meters. PoseNet achieves a moderate localization accuracy near the border and becomes

worse for the center of the field.

FIGURE 8.6: Error Distribution (Spatial Generalization): It shows error distribution
(n = 298) for the methods. Almost 20% of the test locations predicted by Active Search
and PoseNet have more than a three-meter error. In contrast, for SFA, only 3% of locations
have an estimated error greater than three meters. Thus, SFA shows a better tendency to

generalize to unvisited positions.
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8.3.3 Time Evaluation

The time evaluation was performed separately for the mapping and localization phases.
The system uses the dataset containing 1083 training and 284 test images. Both
phases of the SFA-based method were computed on a standard CPU (Intel i5 – 6500
with 3.20GHz). For Active Search, the compute hardware includes a GPU (GeForce
RTX 2070) for 3D scene reconstruction (mapping) and a standard CPU (as men-
tioned earlier) for localization. In contrast, both phases of PoseNet were computed
on a GPU (GeForce RTX 2070). The mapping phase in the table 8.3 reports the pre-
processing and mapping times for generating scene representation using the training
set images. The pre-processing time for SFA indicates the time required to project
fisheye images to panoramic views and extract Fourier features. The corresponding
time for 3D scene reconstruction shows the time to extract SIFTGPU features (us-
ing GeForce RTX 2070) from the fisheye views. For PostNet, this time indicates
the projection of omnidirectional to panoramic views. The mapping time for SFA
includes the time required for SFA training and obtaining metric representation. The
mapping time for scene reconstruction time indicates the time to create the 3D struc-
ture of the scene. The corresponding time for PoseNet shows the time to train a
neural network to directly regress a pose from an image. The localization phase in
the table 8.3 presents the time it took to localize 284 test images for all methods.
The pre-processing time for Active Search includes the time to extract SIFTGPU
features from the test images and to extract the relevant information from the created
3D model as needed by Active Search. Based on the results, the SFA-based method
for this dataset is 886x and 370x faster in mapping than 3D scene reconstruction and
training a neural network, respectively. Similarly, it is 34x and 3x faster than Active
Search and PoseNet in the localization phase. This factor could be further increased
by optimizing the preprocessing for SFA, which is currently implemented in python
and requires more than 85% of the overall localization time.

8.4 Conclusion

The experiments in this chapter aimed to compare the unsupervised SFA-based ap-
proach with structure-based Active Search and learning-based PoseNet methods for
visual localization in a real-world setting. The chapter reported the localization ac-
curacy and computation times for the training and testing phases as performance
metrics. Although Active Search has achieved better median localization accuracy
in both experiments, some results are highly inaccurate (see Fig. 8.5b). This behav-
ior might not be suitable for a robot operating in real-world scenarios. On the other
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Phase Method
Preprocessing

Time [s]

Mapping

Time [s]

Localization

Time [s]

Total

Time [s]

SFA [CPU] 44 5 - 49

3D Reconstruction [GPU] 90 43334 - 43424Mapping

PoseNet [GPU] 120 18000 - 18120

SFA [CPU] 12 - 2 14

Active Search [CPU] 185 - 294 479Localization

PoseNet [GPU] 32 - 10 42

TABLE 8.3: Computation Time Evaluation: The computation times in mapping indicate
generating scene representation with the respective methods using 1083 training set images.
The localization phase shows the time to localize 284 test set images. Based on the results,
the SFA-based method for this dataset is 886x and 370x faster in the mapping phase and
34x and 3x faster in the localization phase than Active Search and PoseNet, respectively.

hand, the SFA-based approach achieves comparable performance to Active Search
near the border wire but generalizes well to the infield locations. The method offers
extremely fast run times for mapping and localization phases, with only slight degra-
dation of accuracy w.r.t Active Search. However, both Active Search and PoseNet
can provide a full 6D pose of an image in contrast to SFA, which offers a 2D position
(x,y). Still, many service robots, such as lawnmowers and vacuum cleaners, do not
require a 6D pose estimation for localization.
The drastically faster run times make the SFA-based localization an attractive solu-
tion to run on low-cost embedded hardware (e.g., on a lawn mower robot). Prelim-
inary results show a further 30% improvement in localization performance using a
Kalman filter to combine odometry with visual localization. To conclude, the ex-
periments show the ability of SFA localization to generalize over time and space
with a straightforward model. SFA-based localization generalizes better to previ-
ously unseen trajectories when compared to Active Search and PoseNet. However,
the advantage that stands out is its much higher speed without needing a GPU.
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Chapter 9

Live Navigation on a Service Robot

This chapter is based on the following peer-reviewed publication:

• Haris, M., Franzius, M., & Bauer-Wersing, U. (2018). Robot navigation on
slow feature gradients. In International Conference on Neural Information Pro-
cessing (ICONIP, pp. 143-154). Springer, Cham.

9.1 Introduction

One of the essential abilities of autonomous robots is navigation in space. For non-
trivial navigation, a robot needs an internal representation of the environment to es-
timate its location and plan a viable path to a target. Visual simultaneous localiza-
tion and mapping (vSLAM) enable a robot to build a map of the environment and
estimate its location simultaneously using vision as the only sensory input. The re-
sulting maps represent the environment in different ways, such as a graph structure
representing the topology or a discretized occupancy grid, which leads to different
navigation strategies (Fuentes-Pacheco et al., 2015). These strategies have different
levels of complexity ranging from reactive motion execution to path planning in met-
rical maps (Meyer et al., 2003).
Navigation is a challenging task for mobile robots. Many animals, on the other hand,
have excellent navigation capabilities. They may take suboptimal paths while reach-
ing the target; however, the paths are flexible and quickly planned, which results
in an adaptive and robust navigation behavior. One such model of rat navigation is
RatSLAM (Milford et al., 2004). The pose is encoded by an activity packet in a 3D
continuous attractor network with the axis representing (x,y,θ ). Self-motion cues
and visual template matching inject energy into the network, shifting the peak of
activity. An extension of RatSLAM is the organization of unique combinations of
local views and pose codes in a graph-like experience map, which enables the model
to maintain a consistent spatial representation over extended periods (Milford et al.,
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2010). Another class of models is based on slowness learning (Wyss et al., 2006;
Franzius et al., 2007) and also focuses on localization as a model of the rodent hip-
pocampus. In slowness learning (Wiskott et al., 2002), the resulting representation
can achieve significant invariances, e.g., to head orientation. Using an uncalibrated
omnidirectional imaging system, an earlier model was successfully applied to a mo-
bile robot in an outdoor environment (Metka et al., 2013). The learned representa-
tions of such models can be projected into metric space for navigation. While such a
step makes quantitative evaluation easier and allows, for example, the integration of
Kalman Filtering, it requires additional computational effort and removes interesting
information from the training phase.
Navigation in topological maps is relatively straightforward and can be performed us-
ing the graph search algorithm A* (Hart et al., 1968). Given an admissible distance
heuristic, it is guaranteed to find the optimal path, but it is a memory and compu-
tationally intensive task for large environments with many obstacles. The potential
field method is a different approach for navigation in metric space that is based on
gradient descent in a vector force field defined by an attractor at the target position
and repulsive forces from obstacles (Khatib, 1985; Barraquand et al., 1991). Al-
though it is an elegant solution, a known limitation of the approach is local minima
caused by certain obstacles or their spatial configuration (Tilove, 1990).
Reinforcement learning has been applied to the low dimensional representation of
the environment, extracted from visual input using Slow Feature Analysis (SFA), to
learn policies that guide an agent to a goal location in a simplified version of the
Morris water maze task (Legenstein et al., 2010) and with views from a mobile robot
(Böhmer et al., 2013). The presented results demonstrate the approach’s feasibility
but require an additional learning step for new goal locations.
Recent work (Metka et al., 2017) proposed an elegant approach for navigation in
slow feature space using gradient descent. After the unsupervised learning of the
environmental representation, navigation can be performed efficiently by following
the SFA-gradient, approximated from distance measurements between the target and
the current value. However, the work was limited to simulation and required multi-
ple cameras to estimate the slow feature gradients. The approach presented in this
chapter extends the previous work to become practical in several ways. Firstly, the
system replaces the part of the slow feature hierarchy with a Fourier feature extrac-
tion as pre-processing step to improve robustness and computation speed and achieve
invariance to the robot’s orientation. Secondly, the approach estimates the navigation
gradient using a single camera. Finally, the chapter presents quantitative results for
navigation with a lawn mower robot in free space and around obstacles.
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9.2 Learning Spatial Representations with SFA

In order to find a representation that is suitable for the navigation task, the goal is to
learn functions that encode the robot’s position (x,y) in space and are invariant to its
orientation. While the objective of SFA enforces temporal slowness on the training
trajectory, a suitable intermeshed training trajectory leads to representations that also
change smoothly in space (Franzius et al., 2007). Furthermore, suppose the envi-
ronment is suitably rich (i.e., without an identical appearance at different locations)
and the function space for training is sufficiently large. In that case, each position in
space is uniquely encoded by its Slow Feature representation. These properties al-
low a robot to navigate by following the gradient of the difference between the spatial
representations of the current position and a target position. The kind of spatial in-
formation encoded in the learned slow feature representations depends solely on the
statistics of the training data. If the robot’s orientation changes on a faster timescale
than its position, the slowest features become orientation invariant (Franzius et al.,
2007). Earlier work simulated additional rotation by shifting a sliding window over
the periodic panoramic images from a 360-degree camera on the robot (Metka et al.,
2013; Metka et al., 2017). Learning orientation invariance, however, generates com-
putational load during training, and the results are not perfect for limited training
data. Noise on Slow Feature representations deteriorates the navigation gradient and
is thus more problematic for gradient-based navigation than for localization. Conse-
quently, the current system explicitly removes orientation dependency from the input
representations for SFA with a pre-processing step. For this purpose, the system ex-
tracts row-wise Fourier Features and retains the magnitude part corresponding to the
lowest 15 components (c.f. chapter 5). It provides a straightforward to achieve orien-
tation invariant representation since the magnitude part is independent of the robot’s
direction. Fourier components obtained for each image by the pre-processing step
are used to learn SFA representations. The learning phase has two steps; the first
reduces dimensionality using a linear SFA, while the second extract non-linear slow
features using a quadratic SFA. The input and output dimensionality for the first step
are 450 and 20, respectively. The input and output dimensionality for the second step
are 20 and 8, respectively.
We can visualize the SFA representation by plotting the color-coded SFA outputs
for the images of all positions captured during the training phase. The theory has
shown that for localization in open space with a relatively high rotational speed, the
first two SFA outputs s1,2 are orthogonal and monotonic (Franzius et al., 2007), so in
this case, there is one global minimum for navigation. The features depicted in the
figure 9.1 encode spatial information with a gradient along the coordinate axes of the
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two slowest features. In contrast to the optimal solutions in open space (Franzius et
al., 2007), the representations are distorted around the obstacle. Due to the slowness
objective of SFA, views of temporally nearby data during training are encoded with
similar slow feature values, while temporally distant data is encoded with distinct
values due to the unit variance constraint of SFA. This implicitly encodes the infor-
mation about obstacles present in a training area as the slow feature values on either
side of an obstacle will be highly different. Figure 9.1 is based on simulation data.
Unfortunately, providing such plots for the actual robot scenario is challenging since
obtaining dense ground-truth data is computationally expensive due to the structure-
from-motion (SfM) step. On the other hand, the quality of odometry information
obtained during robot recordings is insufficient to plot such maps.

a b

FIGURE 9.1: Simulated Spatial Firing Maps: (a) shows spatial firing maps of the first
five SFA units s1..5. The maps of the first two SFA s1,2 units uniquely and smoothly encode
the robot’s position. The maps of functions s3..5 show a mixture of the first two units and
higher modes. (b) The plot shows an example cost surface in a slow feature space when the
target position is in the convex region of the obstacle, as indicated by the circle. Performing

gradient descent on this surface allows a robot to navigate around the obstacle.

9.3 Navigation Method

The system uses slow feature gradients to navigate between arbitrary points in a two-
dimensional space. It is assumed that the target point’s slow feature representation is
known beforehand (e.g., stored during training). The cost function C is the Euclidean
distance between slow feature representations of points in a 2D space. The system
estimates the navigation direction by approximating the gradient of the cost surface.
Thus, navigation between any two points can be achieved by performing gradient
descent on the cost surface C. For an n-dimensional slow feature space, the mapping
function f : R2 7→ Rn maps a position to the slow feature space by processing the
associated image. The cost function (C : Rn 7→ R), which computes the Euclidean
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distance from the current position p := (xp,yp) to the target position t := (xt ,yt)

using only f (p) as input (Metka et al., 2017), is given by:

C( f (p)) =

√
n

∑
i=1

( f (p)i− f (t)i)2

However, the system computes a local linear approximation of the gradient as the
analytical gradient ∂C( f (p))

∂ p is infeasible to obtain. Here, the system uses robotic
odometry to estimate the metric position of previous observations. Please note that
odometry for the recent past is quite precise but deteriorates quickly over long dis-
tances.

9.3.1 Implementation

In general, to estimate the gradient direction at any given position p, in addition to
the cost measurement at current position C( f (p)), we at least need the cost mea-
surements from two nearby positions C( f (p1)) and C( f (p2)). These points must be
non-collinear and are used to fit a plane to the surface of C. In contrast to previous
work (Metka et al., 2017), where two cameras were used to obtain two measurements
at each time step, only a single omnidirectional camera is mounted on a mobile robot
in the current setting. Therefore, obtaining a gradient estimation directly from the
starting point of navigation is impossible. For this reason, the robot traverses a fixed
V-shaped initial trajectory and captures images during traversal. The next step is to
compute the cost at each position by transforming all the captured images in the slow
feature space. The following step creates an estimation matrix E that contains the
coordinates (x,y) obtained from the robot’s odometry information and the associated
cost value C for each visited position. This is followed by applying Singular Value
Decomposition (SVD) on the estimation matrix E to compute the gradient direction.
Please note that although three non-collinear points are sufficient to estimate a gra-
dient at any given position p, the system uses all the intermediate points to increase
the robustness of gradient estimation. The constructed estimation matrix E for each
traversed segment on the navigation path is stored as a history of past values. This
information is also considered to estimate future gradients depending on the win-
dow size. The window size depends on the experiment’s scenario (i.e., navigation in
an open field or around an obstacle). The system parametrizes the window size by
keeping the entire history for free area navigation and a subset for obstacle circum-
navigation. Using a smaller window size for the latter case allows the robot to take
sharp turns; otherwise, it would result in averaging the gradients.
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The odometry quality degrades over time. However, it is still suitable for local posi-
tion estimation, which the robot uses for motor control. After gradient estimation, the
robot moves along the estimated gradient and captures all the intermediate images.
A cost value threshold in slow feature space and a maximum number of iterations
serve as stopping criteria. The process is repeated until one of the conditions is met.
The estimated gradient is normalized and multiplied with a scaling factor η , and a
momentum term γ is also used to incorporate information from past gradients to im-
prove convergence (Metka et al., 2017). The navigation algorithm presented in the
text uses a previously learned slow feature representation and a known target repre-
sentation (see algorithm 1).

1 Navigation Algorithm
1: γ = 0.3 . momentum term
2: η = 0.5 . gradient scaling factor
3: previous_gradient = None
4: Traverse a fixed V-shaped trajectory of length 1.96 m and capture images I
5: do
6: for each image i in I do
7: k = project omnidirectional image i to a panoramic image
8: p = row-wise Fourier expansion of k
9: c = compute cost C( f (p))

10: x,y = retrieve camera position from odometry information
11: append (x,y,c) to estimation matrix E
12: end for
13: g = apply SVD on E to compute direction of steepest descent
14: normalized_gradient = normalize g
15: if previous_gradient is not None then
16: gradient = γ * previous_gradient - η * normalized_gradient
17: else
18: gradient = η * normalized_gradient
19: end if
20: previous_gradient = gradient
21: Move along the gradient direction and capture images I
22: c = compute cost C( f (p)) at the updated position
23: while c < 0.3 or number_of_iterations == 200

9.4 Experiments

Experiments were performed indoors with an area of 4×10 meters. A V-shaped ob-
stacle was placed inside the training area to test the navigation performance around
obstacles. Like the previous experiments, the modified lawn mower equipped with
a single omnidirectional camera was used. It stores omnidirectional images of size
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2880×2880 pixels. The system later projects the recorded images to corresponding
panoramic views of size 300×30 pixels. Figure 9.2 shows an omnidirectional image
and its associated panoramic image from the indoor environment. The lawn mower
was put in a free mowing mode for the training phase. It traversed the environment
for approximately 50 minutes to ensure an even sampling of the environment and
captured 15,000 images. In this mode, it drives straight segments until it detects the
border, where it turns in a random direction. Figure 9.3 shows an example robot tra-
jectory during the training run. Once the training phase is finished, slow features are
computed instantaneously from Fourier components of a single image. The system
only used the first two slow feature unit values s1,2 to perform navigation. For all the
experiments, the gradient scaling factor and the momentum are set to η = 0.5 and
γ = 0.3. The maximum number of iterations and cost value threshold in slow feature
space are set to 200 and 0.3 as stopping criteria, respectively.

(a)

(b)

FIGURE 9.2: Real-world Indoor Environment: (a) Example omnidirectional image from
the indoor scene. (b) The corresponding panoramic image.

9.4.1 Navigation in a Free Space

This experiment aims to test the navigation in open spaces. In this case, the shortest
path between the start and end positions does not contain any obstacle. The gradient-
based navigation results are presented for four different start and end positions with
five trials each.
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FIGURE 9.3: An example training trajectory consists of straight line segments with random
orientation. A V-shaped obstacle is present in the field.

Results

Figure 9.4 shows the results of four different start and end positions. In all the ex-
periments, the robot always reached within the close vicinity of the target location.
However, it stopped at different distances from the target location, even for the trials
of identical start and end positions. Thus, the goal approach rate serves as a per-
formance measure. We varied the success criterion, the final distance to the target
location between 0 and 1 meter, and plotted the goal approach rate for all test runs
(fig. 9.5). The goal approach rate varies between 0% to 96%. For a final distance to
the target location of 0.8 meters as successful navigation, the goal approach rate is
85%.

9.4.2 Navigation around an Obstacle

The aim here is to validate that the slow feature gradients allow a robot to navigate
around obstacles without the need for explicit path planning. In these experiments,
the target location was kept fixed inside the convex region of the obstacle while
different start positions were chosen from the opposite side of the obstacle. The
experimental results are presented for four different starting positions with five trials
each.
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FIGURE 9.4: Navigation in a Free Space: A dot and cross, respectively, mark the start
and target positions. (a)-(d) Results of four different start and end positions using the first
two slow feature units s1,2. A successful trial has a final distance of fewer than 0.8 meters

from a target location.

FIGURE 9.5: Goal Approach Rate: The red line shows the performance trade-off for
free space navigation, while the green line shows the performance trade-off for obstacle
circumnavigation. For the criterion of 0.8 meters as the final distance to the target location,
the robot reached the target location in 85% of the trials for free space and 70% of the trials

for circumnavigation.

Results

The resulting 20 trajectories are shown in fig. 9.6. The system repeated the same
analysis performed for free area navigation experiments. The goal approach rate



96 Chapter 9. Live Navigation on a Service Robot

varies between 0% to 75%. For a success criterion of 0.8 meters, the goal approach
rate is 70%. The plot for the goal approach rate is shown in fig. 9.5 (green). The
performance decrease comes from the cases of the robot navigating very closely
and colliding with the obstacle. The robot hit the obstacle in these cases and never
navigated to the target location. We encountered four such cases out of a total of
twenty test runs. For the current analysis, we treated those cases as a failure. Another
reason for failed navigation is that the robot got stuck in local minima due to flat
gradients as the most variance is concentrated in the regions near the obstacle (see
fig. 9.1b).

FIGURE 9.6: Navigation around an Obstacle: The start and target positions are marked
by a dot and a cross, respectively. (a)-(d) Four different start positions with five trials
each. The robot navigated the obstacle using the first two slow feature unit values s1,2. The
trajectories for the cases where the robot hit the obstacle are indicated by dashed lines. A

successful trial has a final distance of fewer than 0.8 meters from a target location.

9.5 Conclusion

This chapter presented a robot navigation system that works directly in slow fea-
ture space using gradient descent. The slow feature representations are learned for
the specific environment during an offline learning phase where the robot follows the
standard movement pattern of a robotic lawn mower. After the unsupervised learning
step, the robot can navigate by following the difference gradient between its current
spatial representation and the target representation. The direction of the steepest
descent is estimated from images in the recently traveled past. Locations not sep-
arated by obstacles were typically visited temporally close during training and thus
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encoded with similar Slow Feature values. On the other hand, views from different
sides of an obstacle were never seen in temporal proximity and got more different
representations. Thus, the resulting slow feature representations implicitly encode
average travel time during exploration (e.g., obstacles). Hence, circumnavigating
obstacles requires no explicit path planning but is accomplished simply by following
the steepest gradient. The robot reached the target in 85% of trials in an open field
scenario and 70% when the target location was behind the obstacle. Hence, the pro-
posed method reproduces the navigation results of extensive statistical experiments
from a noise-free simulator environment (Metka et al., 2017). The variability in each
set of trajectories is probably due to slight variances in start pose and environmental
changes. In some failure cases, the robot got stuck in regions with flat gradients.
Due to the presence of the obstacle in the training area, the resulting representations
distort around it, which leads to relatively flat gradients for large parts of the training
area, as also depicted in the simulated experiments (Metka et al., 2017). A more
advanced gradient descent algorithm could help to cope with such issues. Further,
an extension to the SFA algorithm made in (Richthofer et al., 2018) presents a fea-
sible solution to overcome this issue. Other failures occurred when the robot hit the
obstacle. In the future, the robot may fall back to standard behavior in such a case,
drive a short distance in a random direction and then resume navigation. Alterna-
tively, an obstacle avoidance sensor on the robot may be used to keep a minimum
distance from obstacles. Environmental changes may directly influence spatial rep-
resentations. However, we can improve them by using the strategies presented in the
chapter 6.
The computational load for the proposed system is orders of magnitudes lower than
that of standard SLAM or Deep Learning systems, as well as those based on Slow
Feature Hierarchies. Learning and application phases are suitable for small and cheap
systems based on digital signal processors (DSPs). The method is especially suited
for an application where the robot has a default operation mode with random naviga-
tion during which the SFA learning can occur. Over time, the robot’s efficiency and
capabilities can improve as described.
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Chapter 10

Summary and Conclusion

This thesis addressed the most fundamental and challenging problem of visual lo-
calization in unstructured outdoor environments. Visual localization estimates the
position of an entity in an environment using a camera. Localization is an essential
prerequisite for autonomous mobile robots, self-driving cars, and augmented reality
applications. In static indoor environments, localization can be considered a solved
problem. However, outdoor scenarios where a scene rapidly changes due to sev-
eral factors (e.g., lighting, weather, seasons, and dynamic objects) pose a significant
challenge to solutions tailored towards visual localization. Hence, this issue limits
the application of most visual localization approaches in real-world scenarios. An-
other important aspect is the hardware requirement, as most state-of-the-art methods
require a GPU to generate a scene representation and perform localization. This
constraint may also limit the applicability of these methods on robots equipped with
low-cost embedded hardware, for instance, lawnmowers. This thesis aimed to tackle
both challenges by learning a spatial representation that allows an agent to localize
itself over extended periods and using computationally inexpensive algorithms that
do not require specialized hardware (e.g., GPU).
This work employed a bio-inspired model for visual localization as many animals
(e.g., rats) show excellent localization and navigation abilities in natural environ-
ments. The model can reproduce the firing characteristics of Place and Head-Direction
Cells found in the rat brain when trained with an agent’s visual cues. The model uses
the concept of unsupervised Slow Features Analysis (SFA), which states that behav-
iorally meaningful information (e.g., position or orientation of an animal in space)
changes on a slower timescale compared to the primary sensory input (e.g., pixel val-
ues in a video). The encoding of a particular cell type in the learned representation
depends on the agent’s movement statistics during training. If, for instance, its posi-
tion changes on a slower time scale than other variables (e.g., orientation), then the
learned representation will implicitly code for the agent’s position in space. Thus the
model allows learning relevant representation (here: robot’s position) directly from
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input statistics in an unsupervised learning process.
The proposed mapping pipeline uses an image stream collected during a robot record-
ing session to learn the spatial representation of a scene. The pipeline applies SFA to
the training data and extracts slow features. For localization, these features must ide-
ally encode the robot’s position (x,y) in space. After training, the localization step
is instantaneous, i.e., the model only needs a single image to compute the output.
The localization pipeline uses the trained SFA model to compute output in the SFA
space. This work shows that SFA space is sufficient for navigation without explicit
path planning. However, a supervised post-processing step maps SFA to metric space
for evaluating and comparing the proposed methods to other localization approaches.
After this step, the pipeline outputs the 2D position (x,y) of each test image.
In outdoor scenarios changing conditions have a substantial impact on the appearance
of a scene, which often prevents successful visual localization. The application of
SFA on the images captured by a robot enables self-localization from a single image.
However, changes occurring during the training phase or over an extended period can
affect the learned representation. This work proposed to join long-term robot record-
ings based on their position correspondences to address the problem. The restructur-
ing scheme allows generating a training sequence where environmental conditions
vary faster than the position of a robot. The generated training data enables SFA to
learn invariance to changing conditions. The experiments were performed using data
from a simulated and real-world outdoor environment. The outdoor data was col-
lected over an entire year with effects like different daytime, weather, seasons, and
dynamic objects. Results show an increasing invariance w.r.t changing conditions
over time. Thus an outdoor robot can improve its localization performance during
operation. The established hierarchical SFA model trained on raw images performs
well. However, using Fourier features to learn a scene representation reduces the
computation time and makes it adequate to run on an ARM embedded system.
Instead of using complete image information, an alternative is to perform visual lo-
calization relative to landmarks present in an environment. The proposed system
learns to recognize landmarks in images and then uses SFA for unsupervised position
estimation w.r.t to each landmark. The straightforward way to learn new landmarks
in a scene is using hand-labeled data to train a neural network. However, this process
is tedious and costly. The proposed approach allows a robot to learn landmarks for
localization with a human cooperatively. This approach uses pre-trained detectors of
everyday objects to learn new landmarks in a scene, requiring minimal human super-
vision. Hence, the method bootstraps the landmark learning process and removes the
need to label large amounts of data manually. The human teacher has complete con-
trol over selecting new landmarks, allowing learning of unique, robustly detectable,
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and semantic landmarks. The work presented localization results using the learned
landmarks in simulated and real-world outdoor environments and compared the re-
sults to models based on complete images and PoseNet. The landmark-based local-
ization achieved better accuracy than the baseline methods in a challenging large-
scale environment. Moreover, the results show that localization accuracy increases
with the number of learned landmarks. Hence the landmark-based approach enables
large-scale localization, an essential feature of any localization method. However,
the only limitation is its dependency on the deep learning-based pre-processing step,
which requires a GPU for execution. Nevertheless, the introduced approach for learn-
ing generic landmarks can overcome this limitation. The proposed method allows
encoding of the robot’s gaze as slowly varying features by utilizing the invariance
learning capability of SFA. After the training phase, the trained model can be used
to perform localization relative to any image patch. This work presented the results
of its prototype implementation, which seems to be quite promising and on par with
other SFA-based approaches. Future work will investigate the integration of a stable
visual tracker for generating the desired training sequence, allowing the robot to per-
form localization by looking anywhere in the scene.
State-of-the-art methods use the 3D structure of a scene for precise visual localiza-
tion. However, 3D scene reconstruction is resource-intensive in terms of hardware
requirements and computation time, making it infeasible to run on low-cost embed-
ded hardware. Unsupervised spatial representation learning with SFA enables com-
putationally inexpensive localization and mapping. This work compared the SFA-
based approach with the well-known structure-based Active Search and learning-
based PoseNet methods in two distinct settings: short-term temporal and extreme
spatial generalization. Results show that the SFA-based mapping and localization
are drastically faster than Active Search and PoseNet while achieving comparable
localization accuracy in the test scenario.
As mentioned earlier, the learned SFA representation is sufficient for the navigation
task. After the unsupervised learning phase, a subset of the resulting representation
encodes the robot’s position. The representation is spatially smooth and implicitly
encodes the average travel time during exploration. Following the SFA gradient al-
lows the robot to navigate even around obstacles without any planning. Earlier work
showed this basic principle in noise-free simulation, using two virtual cameras on a
robot. This work extended the approach to be more robust and computationally effi-
cient. The experiments were performed on a lawn mower robot with a single camera
in an indoor environment. The results show successful navigation in open spaces and
around obstacles using slow feature gradients. The following section summarizes the
main takeaways of the proposed methods in the context of this thesis.
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10.1 Scientific Impact

The unsupervised learning for visual localization and navigation offers the following
advantages over the state-of-the-art approaches:

• Computational Efficiency: Most state-of-the-art approaches (both structure-
and learning-based) require high-end GPUs to generate the environment’s map.
Thus these methods are not best-suited for low-powered embedded devices.
The SFA-based approach does not require high-end hardware for computation
and is up to 800 times faster than the state-of-the-art structure-based method
(Haris et al., 2021).

• Sensor Calibration: State-of-the-art methods that rely on the underlying ge-
ometry of a scene require an offline calibration phase to estimate the camera’s
parameters. Generally, it is assumed that the intrinsic parameters will remain
fixed over time. However, several environmental factors (e.g., temperature and
humidity) may invalidate the previously obtained calibration. On the other
hand, learning-based approaches operate without sensor calibration.

• Fault Detection: Due to the slowness objective of SFA, temporally close/sparse
data gets encoded by similar/unique values, which leads to a spatially smooth
representation. This property makes it easy to detect values that are highly dif-
ferent than temporally close data. Thus the approach provides a simple way to
detect localization errors.

• Robustness to Environmental Changes: Most SLAM systems operate as-
suming that the world will remain unchanged during the entire robot operation
(Cadena et al., 2016). While this may hold for small-scale indoor environ-
ments, it is impossible for larger or dynamic scenes. These methods require
map building from scratch or updating certain map parts with human interven-
tion in changing conditions. On the other hand, SFA can learn invariance to
such changes by restructuring the training data, as introduced in (Haris et al.,
2019), without any human intervention.

• Scale Invariance: Traditional SLAM systems that use a single camera suf-
fers from the scale ambiguity problem and estimate the structure and camera’s
pose with an undetermined scale factor. Scale is typically recovered as a post-
processing step if the absolute distance between two points in space is known.
The SFA approach works independently of the absolute scale of the environ-
ment.
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• High-level Behavior: SFA-based approach has potential for higher-level intel-
ligent behavior (e.g., navigation and efficient planning-free obstacle avoidance
in slow feature space (Haris et al., 2018)).

• Labeled Data: Supervised end-to-end learning approaches need labeled data
for the training phase, typically obtained with a computationally expensive
structure-from-motion (SfM) step. On the other hand, the method here learns
a spatial representation of the environment without labeled data.

• Minimal Assumptions on the Environment: Most geometric-based methods
struggle when the environment has too few features. As long as the environ-
ment is suitably rich (i.e., without an identical appearance at different loca-
tions), SFA can encode a unique representation for each position in space.

However, there are limitations and disadvantages:

• Offline Method: SLAM systems build the environment map and perform the
localization concurrently; SFA requires an offline mapping phase before local-
ization.

• Camera: So far, the best results are achieved with an up-facing fisheye camera
or omnidirectional camera, but the technique can be applied to perspective
cameras.

All localization and navigation experiments were recorded on an outdoor mobile
robot and demonstrated in actual working conditions for autonomous lawnmowers
and indoor service robots. Robustness to changing outdoor conditions is a significant
part of the approach, and the computational efficiency of the method makes it unique
for implementation on potential low-cost products. To conclude, the proposed tech-
nique offers robust localization and navigation with a straightforward model, and
it is feasible for service robots (i.e., lawnmowers and vacuum cleaners) typically
equipped with low-cost embedded hardware.
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Chum, Ondřej and Jiri Matas (2008). “Optimal Randomized RANSAC”. In: IEEE

Transactions on Pattern Analysis and Machine Intelligence 30, pp. 1472–1482.
Churchill, Winston and Paul Newman (2013). “Experience-based navigation for long-

term localisation”. In: International Journal of Robotics Research 32.14, pp. 1645
–1661. DOI: 10.1177/0278364913499193.

Collett, Matthew, Lars Chittka, and Thomas S. Collett (2013). “Spatial Memory in
Insect Navigation”. In: Current Biology 23.17, R789 –R800. DOI: https://
doi.org/10.1016/j.cub.2013.07.020.

Cuperlier, Nicolas, Mathias Quoy, and Philippe Gaussier (2007). “Neurobiologically
inspired mobile robot navigation and planning”. In: Frontiers in Neurorobotics 1.
DOI: 10.3389/neuro.12.003.2007.

Davison, Andrew J., Ian D. Reid, Nicholas D. Molton, and Olivier Stasse (2007).
“MonoSLAM: Real-Time Single Camera SLAM”. In: IEEE Transactions on Pat-

tern Analysis and Machine Intelligence 29.6, pp. 1052–1067. DOI: 10.1109/
TPAMI.2007.1049.

https://doi.org/10.1109/TRO.2016.2624754
https://doi.org/10.1109/TRO.2016.2624754
https://doi.org/10.1109/TRO.2021.3075644
https://doi.org/10.1109/IROS.2014.6942941
https://doi.org/10.1109/IROS.2014.6942941
https://doi.org/10.1109/TCDS.2017.2717451
https://doi.org/10.1177/0278364913499193
https://doi.org/https://doi.org/10.1016/j.cub.2013.07.020
https://doi.org/https://doi.org/10.1016/j.cub.2013.07.020
https://doi.org/10.3389/neuro.12.003.2007
https://doi.org/10.1109/TPAMI.2007.1049
https://doi.org/10.1109/TPAMI.2007.1049


Bibliography 107

DeTone, Daniel, Tomasz Malisiewicz, and Andrew Rabinovich (2017). “SuperPoint:
Self-Supervised Interest Point Detection and Description”. In: CoRR. arXiv: 1712.
07629.

Durrant-Whyte, H. and T. Bailey (2006). “Simultaneous localization and mapping:
part I”. In: IEEE Robotics and Automation Magazine 13.2, pp. 99–110. DOI: 10.
1109/MRA.2006.1638022.

Dusmanu, Mihai, Ignacio Rocco, Tomas Pajdla, Marc Pollefeys, Josef Sivic, Aki-
hiko Torii, and Torsten Sattler (2019). “D2-Net: A Trainable CNN for Joint De-
tection and Description of Local Features”. In: CVPR 2019 - IEEE Conference on

Computer Vision and Pattern Recognition. URL: https://hal.archives-
ouvertes.fr/hal-02438461.

Einecke, Nils, Jörg Deigmöller, Keiji Muro, and Mathias Franzius (2018). “Boundary
Wire Mapping on Autonomous Lawn Mowers”. In: Field and Service Robotics.
Springer International Publishing, pp. 351–365. ISBN: 978-3-319-67361-5.

Engel, Jakob, Vladlen Koltun, and Daniel Cremers (2018). “Direct Sparse Odome-
try”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 40.3,
pp. 611–625. DOI: 10.1109/TPAMI.2017.2658577.

Engel, Jakob J., Thomas Schöps, and Daniel Cremers (2014). “LSD-SLAM: Large-
Scale Direct Monocular SLAM”. In: ECCV.

Espada, Yoan, Nicolas Cuperlier, Guillaume Bresson, and Olivier Romain (2019).
“From Neurorobotic Localization to Autonomous Vehicles”. In: Unmanned sys-

tems 07.03, pp. 183–194. DOI: 10.1142/S2301385019410048.
Forster, Christian, Matia Pizzoli, and Davide Scaramuzza (2014). “SVO: Fast semi-

direct monocular visual odometry”. In: 2014 IEEE International Conference on

Robotics and Automation (ICRA), pp. 15–22. DOI: 10.1109/ICRA.2014.
6906584.

Franzius, Mathias, Henning Sprekeler, and Laurenz Wiskott (2007). “Slowness and
Sparseness Lead to Place, Head-Direction, and Spatial-View Cells”. In: PLOS

Computational Biology, pp. 1–18. DOI: 10.1371/journal.pcbi.0030166.
Frost, D., V. Prisacariu, and D. Murray (2018). “Recovering Stable Scale in Monoc-

ular SLAM Using Object-Supplemented Bundle Adjustment”. In: IEEE Transac-

tions on Robotics 34.3, pp. 736–747.
Fuentes-Pacheco, Jorge, José Ruiz-Ascencio, and Juan Manuel Rendón-Mancha (2015).

“Visual simultaneous localization and mapping: a survey”. In: Artificial Intelli-

gence Review 43.1, pp. 55–81.
Galvez-López, Dorian and Juan D. Tardos (Oct. 2012). “Bags of Binary Words for

Fast Place Recognition in Image Sequences”. In: Trans. Rob. 28.5, 1188–1197.
DOI: 10.1109/TRO.2012.2197158.

https://arxiv.org/abs/1712.07629
https://arxiv.org/abs/1712.07629
https://doi.org/10.1109/MRA.2006.1638022
https://doi.org/10.1109/MRA.2006.1638022
https://hal.archives-ouvertes.fr/hal-02438461
https://hal.archives-ouvertes.fr/hal-02438461
https://doi.org/10.1109/TPAMI.2017.2658577
https://doi.org/10.1142/S2301385019410048
https://doi.org/10.1109/ICRA.2014.6906584
https://doi.org/10.1109/ICRA.2014.6906584
https://doi.org/10.1371/journal.pcbi.0030166
https://doi.org/10.1109/TRO.2012.2197158


108 Bibliography

Gálvez-López, Dorian, Marta Salas, Juan D. Tardós, and J.M.M. Montiel (2016).
“Real-Time Monocular Object SLAM”. In: Robot. Auton. Syst. 75, 435–449. DOI:
10.1016/j.robot.2015.08.009.

Galvez-López, Dorian and Juan D. Tardos (2012). “Bags of Binary Words for Fast
Place Recognition in Image Sequences”. In: IEEE Transactions on Robotics 28.5,
pp. 1188–1197. DOI: 10.1109/TRO.2012.2197158.

Garrido-Jurado, S., R. Muñoz-Salinas, F.J. Madrid-Cuevas, and M.J. Marín-Jiménez
(2014). “Automatic generation and detection of highly reliable fiducial markers
under occlusion”. In: Pattern Recognition 47.6, pp. 2280–2292. DOI: https:
//doi.org/10.1016/j.patcog.2014.01.005.

Gioi, Rafael Grompone von, Jeremie Jakubowicz, Jean-Michel Morel, and Gregory
Randall (2010). “LSD: A Fast Line Segment Detector with a False Detection Con-
trol”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 32.4,
pp. 722–732. DOI: 10.1109/TPAMI.2008.300.

Gomez-Ojeda, Ruben, Francisco-Angel Moreno, David Zuñiga-Noël, Davide Scara-
muzza, and Javier Gonzalez-Jimenez (2019). “PL-SLAM: A Stereo SLAM System
Through the Combination of Points and Line Segments”. In: IEEE Transactions

on Robotics 35.3, pp. 734–746. DOI: 10.1109/TRO.2019.2899783.
Haris, Muhammad, Mathias Franzius, and Ute Bauer-Wersing (2018). “Robot Nav-

igation on Slow Feature Gradients”. In: Neural Information Processing. Springer
International Publishing, pp. 143–154. ISBN: 978-3-030-04239-4.

– (2019). “Robust Outdoor Self-localization In Changing Environments”. In: 2019

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 714–719. DOI: 10.1109/IROS40897.2019.8967549.

– (2021). “Unsupervised Fast Visual Localization and Mapping with Slow Features”.
In: 2021 IEEE International Conference on Image Processing (ICIP), pp. 519–
523. DOI: 10.1109/ICIP42928.2021.9506656.

Hart, Peter E., Nils J. Nilsson, and Bertram Raphael (1968). “A formal basis for the
heuristic determination of minimum cost paths”. In: IEEE Transactions on Systems

Science and Cybernetics SSC-4(2), pp. 100–107.
Hosseinzadeh, M., K. Li, Y. Latif, and I. Reid (2019). “Real-Time Monocular Object-

Model Aware Sparse SLAM”. In: 2019 International Conference on Robotics and

Automation (ICRA), pp. 7123–7129.
Humenberger, Martin, Yohann Cabon, Nicolas Guérin, Julien Morat, Jérôme Re-

vaud, Philippe Rerole, Noé Pion, César Roberto de Souza, Vincent Leroy, and
Gabriela Csurka (2020). “Robust Image Retrieval-based Visual Localization using
Kapture”. In: CoRR. URL: https://arxiv.org/abs/2007.13867.

https://doi.org/10.1016/j.robot.2015.08.009
https://doi.org/10.1109/TRO.2012.2197158
https://doi.org/https://doi.org/10.1016/j.patcog.2014.01.005
https://doi.org/https://doi.org/10.1016/j.patcog.2014.01.005
https://doi.org/10.1109/TPAMI.2008.300
https://doi.org/10.1109/TRO.2019.2899783
https://doi.org/10.1109/IROS40897.2019.8967549
https://doi.org/10.1109/ICIP42928.2021.9506656
https://arxiv.org/abs/2007.13867


Bibliography 109

Ishiguro, H. and S. Tsuji (1996). “Image-based memory of environment”. In: Pro-

ceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems.

IROS ’96. Vol. 2, 634–639 vol.2. DOI: 10.1109/IROS.1996.571018.
Jeffery, Kathryn J. and John M. O’Keefe (1999). “Learned interaction of visual and

idiothetic cues in the control of place field orientation”. In: Experimental Brain

Research 127, pp. 151–161.
Kendall, Alex, Matthew Grimes, and Roberto Cipolla (2015). “Convolutional net-

works for real-time 6-DOF camera relocalization”. In: CoRR. URL: http://
arxiv.org/abs/1505.07427.

Kendall, Alex and Roberto Cipolla (2017). “Geometric Loss Functions for Camera
Pose Regression with Deep Learning”. In: 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 6555–6564. DOI: 10.1109/CVPR.
2017.694.

Khatib, O. (1985). “Real-time obstacle avoidance for manipulators and mobile robots”.
In: Proceedings. 1985 IEEE International Conference on Robotics and Automa-

tion. Vol. 2, pp. 500–505.
Klein, Georg and David Murray (2007). “Parallel Tracking and Mapping for Small

AR Workspaces”. In: 2007 6th IEEE and ACM International Symposium on Mixed

and Augmented Reality, pp. 225–234. DOI: 10.1109/ISMAR.2007.4538852.
Kneip, Laurent, Davide Scaramuzza, and Roland Siegwart (2011). “A novel parametriza-

tion of the perspective-three-point problem for a direct computation of absolute
camera position and orientation”. In: CVPR 2011, pp. 2969–2976. DOI: 10 .
1109/CVPR.2011.5995464.

Knierim, JJ, HS Kudrimoti, and BL McNaughton (1995). “Place cells, head direction
cells, and the learning of landmark stability”. In: Journal of Neuroscience 15.3,
pp. 1648–1659. DOI: 10.1523/JNEUROSCI.15-03-01648.1995.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey Hinton (Jan. 2012). “ImageNet Clas-
sification with Deep Convolutional Neural Networks”. In: Neural Information Pro-

cessing Systems 25. DOI: 10.1145/3065386.
Lambrinos, Dimitrios, Ralf Möller, Thomas Labhart, Rolf Pfeifer, and Rüdiger Wehner

(2000). “A mobile robot employing insect strategies for navigation”. In: Robotics

and Autonomous Systems 30.1-2, pp. 39–64. DOI: 10.1016/S0921-8890(99)
00064-0.

Legenstein, Robert, Niko Wilbert, and Laurenz Wiskott (2010). “Reinforcement Learn-
ing on Slow Features of High-Dimensional Input Streams”. In: PLoS Computa-

tional Biology 6.8, pp. 1–13.

https://doi.org/10.1109/IROS.1996.571018
http://arxiv.org/abs/1505.07427
http://arxiv.org/abs/1505.07427
https://doi.org/10.1109/CVPR.2017.694
https://doi.org/10.1109/CVPR.2017.694
https://doi.org/10.1109/ISMAR.2007.4538852
https://doi.org/10.1109/CVPR.2011.5995464
https://doi.org/10.1109/CVPR.2011.5995464
https://doi.org/10.1523/JNEUROSCI.15-03-01648.1995
https://doi.org/10.1145/3065386
https://doi.org/10.1016/S0921-8890(99)00064-0
https://doi.org/10.1016/S0921-8890(99)00064-0


110 Bibliography

Lin, Tsung-Yi, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollár, and C. Lawrence Zitnick (2014). “Microsoft COCO: Com-
mon Objects in Context”. In: Computer Vision – ECCV 2014. Springer Interna-
tional Publishing, pp. 740–755.

Liu, Liu, Hongdong Li, and Yuchao Dai (2017). “Efficient Global 2D-3D Matching
for Camera Localization in a Large-Scale 3D Map”. In: 2017 IEEE International

Conference on Computer Vision (ICCV), pp. 2391–2400. DOI: 10.1109/ICCV.
2017.260.

Lowe, David G. (2004). “Distinctive Image Features from Scale-Invariant Keypoints”.
In: International Journal of Computer Vision 60, pp. 91–110.

Mccormac, John, Ronald Clark, Michael Bloesch, Andrew Davison, and Stefan Leuteneg-
ger (2018). “Fusion++: Volumetric Object-Level SLAM”. In: pp. 32–41. DOI: 10.
1109/3DV.2018.00015.

McManus, Colin, Winston Churchill, Will Maddern, Alexander D. Stewart, and Paul
Newman (2014). “Shady dealings: Robust, long-term visual localisation using il-
lumination invariance”. In: 2014 IEEE International Conference on Robotics and

Automation (ICRA), pp. 901–906. DOI: 10.1109/ICRA.2014.6906961.
Menegatti, Emanuele, Mauro Zoccarato, Enrico Pagello, and Hiroshi Ishiguro (2003).

“Image-Based Monte-Carlo Localisation without a Map”. In: AI*IA 2003: Ad-

vances in Artificial Intelligence. Springer Berlin Heidelberg, pp. 423–435. ISBN:
978-3-540-39853-0.

Meng, L., J. Chen, F. Tung, J. J. Little, J. Valentin, and C. W. de Silva (2017). “Back-
tracking regression forests for accurate camera relocalization”. In: 2017 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pp. 6886–
6893. DOI: 10.1109/IROS.2017.8206611.

Metka, Benjamin (2019). “Robust Visual Self-localization and Navigation in Out-
door Environments Using Slow Feature Analysis”. In:

Metka, Benjamin, Mathias Franzius, and Ute Bauer-Wersing (2013). “Outdoor Self-
Localization of a Mobile Robot Using Slow Feature Analysis”. In: Neural Infor-

mation Processing - 20th International Conference, ICONIP 2013, Daegu, Korea,

November 3-7, 2013. Proceedings, Part I, pp. 249–256.
– (2016). “Improving Robustness of Slow Feature Analysis Based Localization Us-

ing Loop Closure Events”. In: Artificial Neural Networks and Machine Learn-

ing - ICANN 2016 - 25th International Conference on Artificial Neural Networks,

Barcelona, Spain, September 6-9, 2016, Proceedings, Part II. Vol. 9887. Lecture
Notes in Computer Science. Springer, pp. 489–496. DOI: 10.1007/978-3-
319-44781-0\_58.

https://doi.org/10.1109/ICCV.2017.260
https://doi.org/10.1109/ICCV.2017.260
https://doi.org/10.1109/3DV.2018.00015
https://doi.org/10.1109/3DV.2018.00015
https://doi.org/10.1109/ICRA.2014.6906961
https://doi.org/10.1109/IROS.2017.8206611
https://doi.org/10.1007/978-3-319-44781-0\_58
https://doi.org/10.1007/978-3-319-44781-0\_58


Bibliography 111

– (2017). “Efficient navigation using slow feature gradients”. In: 2017 IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems, IROS 2017, Vancouver,

BC, Canada, September 24-28, 2017, pp. 1311–1316.
Metka, Benjamin, Mathias Franzius, and Ute Bauer-Wersing (Sept. 2018). “Bio-

inspired visual self-localization in real world scenarios using Slow Feature Anal-
ysis”. In: PLOS ONE 13.9, pp. 1–18. DOI: 10 . 1371 / journal . pone .
0203994.

Meyer, Jean-Arcady and David Filliat (2003). “Map-based navigation in mobile robots.
II. A review of map-learning and path-planning strategies”. In: Cognitive Systems

Research 4.4, pp. 283–317.
Milford, Michael, Gordon Wyeth, and David Prasser (2004). “RatSLAM: a Hip-

pocampal Model for Simultaneous Localization and Mapping”. In: Proceedings

of the 2004 IEEE International Conference on Robotics and Automation, ICRA

2004, April 26 - May 1, 2004, New Orleans, LA, USA, pp. 403–408.
Milford, Michael and Gordon Wyeth (2010). “Persistent Navigation and Mapping us-

ing a Biologically Inspired SLAM System”. In: I. J. Robotics Res. 29.9, pp. 1131–
1153.

Milford, Michael and Ruth Schulz (2014). “Principles of goal-directed spatial robot
navigation in biomimetic models”. In: Philosophical Transactions of the Royal

Society of London B: Biological Sciences 369.1655. DOI: 10.1098/rstb.
2013.0484.

Milford, Michael J. and Gordon F. Wyeth (2008). “Mapping a Suburb With a Single
Camera Using a Biologically Inspired SLAM System”. In: IEEE Transactions on

Robotics 24.5, pp. 1038–1053. DOI: 10.1109/TRO.2008.2004520.
Moulon, Pierre, Pascal Monasse, and Renaud Marlet (2013). “Global Fusion of Rel-

ative Motions for Robust, Accurate and Scalable Structure from Motion”. In: 2013

IEEE International Conference on Computer Vision, pp. 3248–3255. DOI: 10.
1109/ICCV.2013.403.

Muehlemann, Anton (2019). TrainYourOwnYOLO: Building a Custom Object De-

tector from Scratch. URL: https://github.com/AntonMu/.
Mueller, Matthias, Neil Smith, and Bernard Ghanem (2017). “Context-Aware Corre-

lation Filter Tracking”. In: 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 1387–1395. DOI: 10.1109/CVPR.2017.152.
Mur-Artal, Raúl, J. M. M. Montiel, and Juan D. Tardós (2015). “ORB-SLAM: A

Versatile and Accurate Monocular SLAM System”. In: IEEE Transactions on

Robotics 31.5, pp. 1147–1163. DOI: 10.1109/TRO.2015.2463671.

https://doi.org/10.1371/journal.pone.0203994
https://doi.org/10.1371/journal.pone.0203994
https://doi.org/10.1098/rstb.2013.0484
https://doi.org/10.1098/rstb.2013.0484
https://doi.org/10.1109/TRO.2008.2004520
https://doi.org/10.1109/ICCV.2013.403
https://doi.org/10.1109/ICCV.2013.403
https://github.com/AntonMu/
https://doi.org/10.1109/CVPR.2017.152
https://doi.org/10.1109/TRO.2015.2463671


112 Bibliography

Mur-Artal, Raúl and Juan D. Tardós (2017). “ORB-SLAM2: An Open-Source SLAM
System for Monocular, Stereo, and RGB-D Cameras”. In: IEEE Transactions on

Robotics 33.5, pp. 1255–1262. DOI: 10.1109/TRO.2017.2705103.
Newcombe, Richard A., S. Lovegrove, and Andrew J. Davison (2011). “DTAM:

Dense tracking and mapping in real-time”. In: 2011 International Conference on

Computer Vision, pp. 2320–2327.
Nicholson, Lachlan, Michael Milford, and Niko Sünderhauf (2018). “QuadricSLAM:

Constrained Dual Quadrics from Object Detections as Landmarks in Semantic
SLAM”. In: CoRR. arXiv: 1804.04011.

O’Keefe, J. and J. Dostrovsky (1971). “The hippocampus as a spatial map. Prelim-
inary evidence from unit activity in the freely-moving rat”. In: Brain Research

34.1, pp. 171–175. DOI: https://doi.org/10.1016/0006-8993(71)
90358-1.

Parkhiya, P., R. Khawad, J. K. Murthy, B. Bhowmick, and K. M. Krishna (2018).
“Constructing Category-Specific Models for Monocular Object-SLAM”. In: 2018

IEEE International Conference on Robotics and Automation (ICRA), pp. 4517–
4524.

Philippides, Andrew, Bart Baddeley, Ken Cheng, and Paul Graham (2011). “How
might ants use panoramic views for route navigation?” In: Journal of Experimental

Biology 214.3, pp. 445–451. DOI: 10.1242/jeb.046755.
Pumarola, Albert, Alexander Vakhitov, Antonio Agudo, Alberto Sanfeliu, and Francese

Moreno-Noguer (2017). “PL-SLAM: Real-time monocular visual SLAM with points
and lines”. In: 2017 IEEE International Conference on Robotics and Automation

(ICRA), pp. 4503–4508. DOI: 10.1109/ICRA.2017.7989522.
Redmon, Joseph and Ali Farhadi (2018). “YOLOv3: An Incremental Improvement”.

In: CoRR abs/1804.02767. arXiv: 1804.02767.
Richthofer, Stefan and Laurenz Wiskott (2018). “Global Navigation Using Predictable

and Slow Feature Analysis in Multiroom Environments, Path Planning and Other
Control Tasks”. In: CoRR.

Rublee, Ethan, Vincent Rabaud, Kurt Konolige, and Gary Bradski (2011). “ORB:
An efficient alternative to SIFT or SURF”. In: 2011 International Conference on

Computer Vision, pp. 2564–2571. DOI: 10.1109/ICCV.2011.6126544.
Salas-Moreno, Renato F., Richard A. Newcombe, Hauke Strasdat, Paul H.J. Kelly,

and Andrew J. Davison (2013). “SLAM++: Simultaneous Localisation and Map-
ping at the Level of Objects”. In: Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR).
Sarlin, Paul-Edouard, Cesar Cadena, Roland Siegwart, and Marcin Dymczyk (2019).

“From Coarse to Fine: Robust Hierarchical Localization at Large Scale”. In: 2019

https://doi.org/10.1109/TRO.2017.2705103
https://arxiv.org/abs/1804.04011
https://doi.org/https://doi.org/10.1016/0006-8993(71)90358-1
https://doi.org/https://doi.org/10.1016/0006-8993(71)90358-1
https://doi.org/10.1242/jeb.046755
https://doi.org/10.1109/ICRA.2017.7989522
https://arxiv.org/abs/1804.02767
https://doi.org/10.1109/ICCV.2011.6126544


Bibliography 113

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12708–
12717. DOI: 10.1109/CVPR.2019.01300.

Sattler, T., B. Leibe, and L. Kobbelt (2017). “Efficient Effective Prioritized Match-
ing for Large-Scale Image-Based Localization”. In: IEEE Transactions on Pat-

tern Analysis and Machine Intelligence 39.9, pp. 1744–1756. DOI: 10.1109/
TPAMI.2016.2611662.

Sattler, Torsten, Bastian Leibe, and Leif Kobbelt (2011). “Fast image-based local-
ization using direct 2D-to-3D matching”. In: 2011 International Conference on

Computer Vision, pp. 667–674. DOI: 10.1109/ICCV.2011.6126302.
– (2012). “Improving Image-Based Localization by Active Correspondence Search”.

In: Computer Vision – ECCV 2012. Springer Berlin Heidelberg, pp. 752–765.
Sattler, Torsten, Qunjie Zhou, Marc Pollefeys, and Laura Leal-Taixé (2019). “Un-

derstanding the Limitations of CNN-Based Absolute Camera Pose Regression”.
In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 3297–3307.
Schönberger, Johannes L. and Jan-Michael Frahm (2016). “Structure-from-Motion

Revisited”. In: 2016 IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pp. 4104–4113. DOI: 10.1109/CVPR.2016.445.
Schönberger, Johannes L., Hans Hardmeier, Torsten Sattler, and Marc Pollefeys (2017).

“Comparative Evaluation of Hand-Crafted and Learned Local Features”. In: 2017

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6959–
6968. DOI: 10.1109/CVPR.2017.736.

Schönberger, Johannes L., Marc Pollefeys, Andreas Geiger, and Torsten Sattler (2018).
“Semantic Visual Localization”. In: The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR).
Shi, Jianbo and Tomasi (1994). “Good features to track”. In: 1994 Proceedings of

IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600. DOI:
10.1109/CVPR.1994.323794.

Smith, Randall, Matthew Self, and Peter Cheeseman (1990). “Estimating Uncertain
Spatial Relationships in Robotics”. In: Autonomous Robot Vehicles. Springer New
York, pp. 167–193. DOI: 10.1007/978-1-4613-8997-2_14.

Snavely, Noah, Steven M. Seitz, and Richard Szeliski (2006). “Photo tourism: Ex-
ploring photo collections in 3D”. In: SIGGRAPH Conference Proceedings. ACM
Press, pp. 835–846. ISBN: 1-59593-364-6.

Stone, Thomas, Michael Mangan, Paul Ardin, and Barbara Webb (2014). “Sky seg-
mentation with ultraviolet images can be used for navigation”. In: Robotics: Sci-

ence and Systems X, University of California, Berkeley, USA, July 12-16, 2014.
URL: http://www.roboticsproceedings.org/rss10/p47.html.

https://doi.org/10.1109/CVPR.2019.01300
https://doi.org/10.1109/TPAMI.2016.2611662
https://doi.org/10.1109/TPAMI.2016.2611662
https://doi.org/10.1109/ICCV.2011.6126302
https://doi.org/10.1109/CVPR.2016.445
https://doi.org/10.1109/CVPR.2017.736
https://doi.org/10.1109/CVPR.1994.323794
https://doi.org/10.1007/978-1-4613-8997-2_14
http://www.roboticsproceedings.org/rss10/p47.html


114 Bibliography

Sucar, E. and J. Hayet (2018). “Bayesian Scale Estimation for Monocular SLAM
Based on Generic Object Detection for Correcting Scale Drift”. In: 2018 IEEE

International Conference on Robotics and Automation (ICRA), pp. 5152–5158.
Sünderhauf, Niko, Feras Dayoub, Sareh Shirazi, Ben Upcroft, and Michael Milford

(2015). “On the Performance of ConvNet Features for Place Recognition”. In:
CoRR. URL: http://arxiv.org/abs/1501.04158.

Sünderhauf, Niko, Sareh Shirazi, Adam Jacobson, Feras Dayoub, Edward Pepperell,
Ben Upcroft, and Michael Milford (2015). “Place recognition with ConvNet land-
marks: Viewpoint-robust, condition-robust, training-free”. In: Robotics: Science

and Systems. URL: https://eprints.qut.edu.au/84931/.
Taube, Jeffrey, Robert Muller, and James Ranck Jr (1990). “Head-direction cells

recorded from the postsubiculum in freely moving rats. I. Description and quanti-
tative analysis”. In: The Journal of neuroscience 10, pp. 420–35. DOI: 10.1523/
JNEUROSCI.10-02-00420.1990.

Thrun, Sebastian (1998). “Bayesian Landmark Learning for Mobile Robot Localiza-
tion”. In: Mach. Learn. 33.1, 41–76. DOI: 10.1023/A:1007554531242.

Tilove, R. B. (1990). “Local obstacle avoidance for mobile robots based on the
method of artificial potentials”. In: Proceedings., IEEE International Conference

on Robotics and Automation, 566–571 vol.1. DOI: 10.1109/ROBOT.1990.
126041.

Toft, Carl et al. (2022). “Long-Term Visual Localization Revisited”. In: IEEE Trans-

actions on Pattern Analysis and Machine Intelligence 44.4, pp. 2074–2088. DOI:
10.1109/TPAMI.2020.3032010.

Valada, Abhinav, Noha Radwan, and Wolfram Burgard (2018). “Deep Auxiliary
Learning for Visual Localization and Odometry”. In: 2018 IEEE International

Conference on Robotics and Automation (ICRA), pp. 6939–6946. DOI: 10.1109/
ICRA.2018.8462979.

Valgren, Christoffer and Achim J. Lilienthal (2010). “SIFT, SURF & seasons: Appearance-
based long-term localization in outdoor environments”. In: Robotics and Autonomous

Systems 2, pp. 149–156. DOI: https://doi.org/10.1016/j.robot.
2009.09.010.

Wehner, R, B Michel, and P Antonsen (1996). “Visual navigation in insects: coupling
of egocentric and geocentric information”. In: Journal of Experimental Biology

199.1, pp. 129–140. URL: http://jeb.biologists.org/content/
199/1/129.

Wiskott, L., P. Berkes, M. Franzius, H. Sprekeler, and N. Wilbert (2011). “Slow fea-
ture analysis”. In: Scholarpedia 6.4, p. 5282. DOI: 10.4249/scholarpedia.
5282.

http://arxiv.org/abs/1501.04158
https://eprints.qut.edu.au/84931/
https://doi.org/10.1523/JNEUROSCI.10-02-00420.1990
https://doi.org/10.1523/JNEUROSCI.10-02-00420.1990
https://doi.org/10.1023/A:1007554531242
https://doi.org/10.1109/ROBOT.1990.126041
https://doi.org/10.1109/ROBOT.1990.126041
https://doi.org/10.1109/TPAMI.2020.3032010
https://doi.org/10.1109/ICRA.2018.8462979
https://doi.org/10.1109/ICRA.2018.8462979
https://doi.org/https://doi.org/10.1016/j.robot.2009.09.010
https://doi.org/https://doi.org/10.1016/j.robot.2009.09.010
http://jeb.biologists.org/content/199/1/129
http://jeb.biologists.org/content/199/1/129
https://doi.org/10.4249/scholarpedia.5282
https://doi.org/10.4249/scholarpedia.5282


Bibliography 115

Wiskott, Laurenz and Terrence J. Sejnowski (2002). “Slow Feature Analysis: Un-
supervised Learning of Invariances”. In: Neural Computation 14.4, pp. 715–770.
DOI: 10.1162/089976602317318938.

Wyss, Reto, Peter König, and Paul F. M. J Verschure (Apr. 2006). “A Model of the
Ventral Visual System Based on Temporal Stability and Local Memory”. In: PLoS

Biology 4, e120.
Yang, Shichao and Sebastian Scherer (2019). “CubeSLAM: Monocular 3-D Object

SLAM”. In: IEEE Transactions on Robotics, pp. 1–14. DOI: 10.1109/TRO.
2019.2909168.

Zhang, Zichao, Christian Forster, and Davide Scaramuzza (2017). “Active exposure
control for robust visual odometry in HDR environments”. In: 2017 IEEE Inter-

national Conference on Robotics and Automation (ICRA), pp. 3894–3901. DOI:
10.1109/ICRA.2017.7989449.

Zhao, Zhongliang, Jose Carrera, Joel Niklaus, and Torsten Braun (2018). “Machine
Learning-Based Real-Time Indoor Landmark Localization”. In: Wired/Wireless In-

ternet Communications. Springer International Publishing, pp. 95–106. ISBN: 978-
3-030-02931-9.

Zhu, Kaiying, Xiaoyan Jiang, Zhijun Fang, Yongbin Gao, Hamido Fujita, and Jenq-
Neng Hwang (2021). “Photometric Transfer for Direct Visual Odometry”. In: Know.-

Based Syst. DOI: 10.1016/j.knosys.2020.106671.
Zito, Tiziano, Niko Wilbert, Laurenz Wiskott, and Pietro Berkes (2009). “Modu-

lar toolkit for Data Processing (MDP): a Python data processing framework”. In:
Front. Neuroinform. 2.8. DOI: 10.3389/neuro.11.008.2008.

https://doi.org/10.1162/089976602317318938
https://doi.org/10.1109/TRO.2019.2909168
https://doi.org/10.1109/TRO.2019.2909168
https://doi.org/10.1109/ICRA.2017.7989449
https://doi.org/10.1016/j.knosys.2020.106671
https://doi.org/10.3389/neuro.11.008.2008

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Sensors for Localization
	Application Area
	Visual Localization and Mapping
	Thesis Outline
	Accepted Publications

	Literature Overview
	Structure-based Methods
	Learning-based Methods
	Simultaneous Localization and Mapping (SLAM)
	Semantics-based Methods
	Bio-inspired Methods

	Slow Feature Analysis
	Background Motivation
	Mathematical Definition
	The Algorithm
	Hierarchical SFA Network
	Applications in Computational Neuroscience
	Oriospatial Cells in the Hippocampus

	Learning Scene Representation with SFA

	Data Acquisition
	Simulated Data Generation
	Real-world Data Collection
	Hardware
	Recording Environments and Setup
	Data Post-processing
	Recorded Data Sets


	Visual Localization and Mapping Pipeline
	Mapping Pipeline
	Network Architecture and Training

	Localization Pipeline

	Long-term Robust Localization
	Learning Invariance to Short-term Conditions
	Learning Invariance to Long-term Conditions
	Experimental Results
	Experiments in Simulated Environments
	Localization Performance on a Single Recording
	Effect of Slowly Changing Light on Localization
	Influence of Dynamic Objects on Localization
	Learning Invariance to Long-term Environmental Changes

	Experiments in a Real-world Environment

	Conclusion

	SFA Localization on Landmark Views
	System Overview
	Cooperative Landmark Learning
	Method Description

	Localization Learning on Landmark Views
	Acquiring Landmark Views
	Mapping Phase
	Localization Phase

	Experiments
	Simulated Experiments
	Real-world Experiments
	Small-scale Garden
	Large-scale Garden

	Scaling Experiments

	Discussion
	Visual Localization using Generic Landmarks
	Proposed Method
	Experimental Results

	Conclusion

	Fast Visual Localization and Mapping with Slow Features
	Structure-based Localization
	Experiments
	Results
	Short-term Temporal Generalization
	Spatial Generalization
	Time Evaluation

	Conclusion

	Live Navigation on a Service Robot
	Introduction
	Learning Spatial Representations with SFA
	Navigation Method
	Implementation

	Experiments
	Navigation in a Free Space
	Results

	Navigation around an Obstacle
	Results


	Conclusion

	Summary and Conclusion
	Scientific Impact

	Bibliography

